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Drill down into Moore’s Law

Transistor density doubles every two years
n Sustained for ~50 years, despite many predictions of its 

end
Real Moore’s Law
n Society does not care for transistors, all it wants is 

performance: double it every two years (or else)
Our challenges (all of CS)

n Sustain Moore’s law of density (more and more difficult).  
Eventually, it must(?) come to an end

n Continue to deliver performance (translate the transistors 
into performance)

n Faster processors
n Better architectures, run-time systems, languages, 

compilers, networks.
n Better algorithms
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Translating transistors into 
performance

Denard scaling:  small transistors also use less power
n Reduce operating voltage
n Increase clock frequency
n Maintain constant total power
Every new generation doubled the clock frequency.
Broke down in ~2004
Leakage power was no longer negligible
Solution: multicores
n Stop increasing the frequency, but increase 

parallelism
n The number of processors (cores), plus
n Internal parallelism (vector/SIMD) within a core
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Moore’s Law & Multicores
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From transistors to performance: 
everything is important
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Parallel Machines

n Shared Memory Multiprocessors: A core is a full-fledged 
processor.  Each core can access a single shared 
memory.

n Multi-core chips with accelerators (special co-processor 
that executes simple codes in parallel
n most modern processors, laptops, tablets, and desktops.  

Exploiting both – processor and accelerator – for the same 
program is hard.

n Distributed memory multi-computers Each node’s  
memory is private, nodes communicate via an 
interconnection network

n Clouds/Data centers Large scale, mostly independent 
tasks with infrequent communication.  More scalable 
than DMMs.

This course focuses on the first one (SMM)
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Dynamic Multi-threading

1. Nested Parallelism (aka Task Parallelism), where a 
function call (or a block of code) is “spawned,” 
allowing the caller and spawned function to run in 
parallel

2. Loop Parallelism where iterations of the loop can 
execute in parallel (they are independent).

Tasks/loop-iterations are executed by threads or virtual 
processors
Exactly when and where a thread executes is not decided 
by the programmer, but by a run time system (RTS). It 
coordinates, schedules and manages the parallel 
resources.  Programmer does not worry about
n Data partitioning (shared memory) and
n Task scheduling.
But programmer is responsible for correctness
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Parallel constructs
4 keywords

Tasks
n Created/specified by keyword spawn
n Synchronized by keyword sync
Parallel loops
n Created by keyword parallel before loop.
n Local/private  variables introduced with keyword 

new
Key principle: removing all parallel constructs
n Doesn’t change the program/algorithm

Models many modern parallel systems/languages
(OpenMP, Cilk/Intel TBB, OpenCL, etc.)
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DMT: recursive Fibonacci
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Fib(n):
if n<=1 return n;
x = Fib(n-1);
y = Fib(n-2);
return x+y; 4

3
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Complexity

Set up the recurrence, solve it (two recursive calls, plus constant 
work outside)

! " = $ 0 if " ≤ 1
!(" − 1) + !(" − 2) + 1 otherwise

Claim: the cost of Fib is (nearly) the same as Fib,

! " = 6 Fib " = $ 0 if " ≤ 1
Fib " − 1 otherwise

n Proof by strong induction.
Stronger claim (about the value of Fib itself)

Fib " = 6 1 + √5
2

;

More advanced (CS 420)
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Fib execution DAG
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Ignore colors for now
n Box: function call
n Circle is a strand, 

a block/sequence 
of instructions (no 
control flow), aka 
basic block

n Arrows: indicate 
control flow, i.e., 
a call, a 
sequence, a 
return, etc.

n Work: total 
number of strands

Fib(4)

Fib(3) Fib(2)

Fib(2) Fib(1) Fib(0)

Fib(1) Fib(0)

Fib(1)

Fib(n):
if n<=1 return n;
x = Fib(n-1);
y = Fib(n-2);
return x+y;



Parallel Fib & its DAG
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n Gray box:  spawned
(and executed by 
different thread)

n Dark box: executed 
by same thread

n Gray circles: code 
preceding spawn

n Orange circles: in 
parent

n White circles: 
(code after sync)

n Bold edges: critical 
path: longest path 
through the dag

P-Fib(n):
if n<=1 return n;
x = spawn P-Fib(n-1);
y = P-Fib(n-2);
sync
return x+y;

P-Fib(4)

P-Fib(3) P-Fib(2)

P-Fib(2) P-Fib(1) P-Fib(0)

P-Fib(1) P-Fib(0)

P-Fib(1)



P-Fib & execution model
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n To prevent an incorrect answer, sync before 
adding  results

n Actually, return has implicit sync, so the sync
here is not necessary

n Edge (", $) is a dependence " must execute 
before $

n Strand with two successors: one is spawned
n Stand with two incoming edges must sync
n Strands on a path execute sequentially, 

otherwise they execute in parallel
n Spawn and call edges point downward, a 

horizontal edge indicates that the parent may 
keep computing while spawn executes, return 
edges point up

n Two Metrics
n Work: total number of strands (17)
n Span: number of nodes in critical path (8)

r

P-Fib(n):
if n<=1 return n;
x = spawn P-Fib(n-1);
y = P-Fib(n-2);
sync
return x+y;

P-Fib(4)

P-Fib(3) P-Fib(2)

P-Fib(2) P-Fib(1) P-Fib(0)

P-Fib(1) P-Fib(0)

P-Fib(1)



Impact of the schedule
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Two processors

Schedule 1
P2          3  5  7
P1      1  2  4  6  8  9
-----------------------
time  1  2  3  4  5  6 

Schedule 2
P2          3  6  
P1      1  2  4  5  7  8  9
------------------------
time  1  2  3  4  5  6  7
n Idle time: number of empty slots 

(processor not busy) in schedule
n schedule 1: 3,    schedule 2: 5 

r
6: P-F1

1: P-F3

2: P-F2 3

4: P-F1 5

7: P-F0

8

9

Unfolded DAG for PF-3



Performance Metrics

n Work: total time to execute the program 
sequentially.  Assuming 1 time unit per strand, 
this is the number of nodes (circles) in the 
DAG.

n Span: max time to execute strands on any path 
in the DAG
n number of nodes on the critical path of the DAG.

Intuitive interpretation:
n Work models sequential execution time,
n Span models ideal parallel execution time
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Work and Span

n Two different cost metrics, we have !(#, %)
n Both can grow asymptotically.  We are 

interested in how  !(#, %) grows/reduces as
n # grows (usual asymptotic analysis)
n % grows (scalability of the algorithm – can it 

effectively use parallelism) 

n Work & span are particular cases:
n ! #, 1 = !) # = !) is the work
n ! #,∞ = !+ # = !+ is the span
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Performance (lower) bounds

Work Law
In one step, ! processors can execute at most ! strands.  Total 
number of strands is the work, "# So,

"$ ≥
"#
!

Span Law
Arrange the DAG by “critical path,” (also called the ASAP (as-
soon-as-possible) schedule. Execute “layer by layer.”
n Always possible with unbounded number of processors, so
n Number of time steps is "& critical path length
n With only ! processors, execution time cannot be any smaller 

than this, so
"$ ≥ "&

So,  "$ ≥ max("&, "#)
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But what about the schedule

n We really have a more complicated 
function,  !(#, %, schedule)

n Many  questions:
n What is the best schedule?
n How does it depend on the machine, the OS, 

the compiler?
n Can we always find the best schedule?
n How to analyze across the schedules?

n There is good news
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Performance (upper) bounds

2 max(&', &)) ≥ &, ≥ -(max(&', &)))

&, = -(max(&', &)))
In the ASAP schedule, let there be /0 nodes with critical path length 1
n With only 2 processors, we simulate the ASAP schedule:

n The ASAP time step 1 is split into blocks of size 2 and run sequentially

n This takes 34, actual time steps.  Putting this together, 

&, = 5
06)

78 /0
2

≤ 5
06)

78 /0
2 + 1

= 5
06)

78 /0
2 + 1 =5

06)

78 /0
2 +5

06)

78
1 = 1

2506)

78
/0 + &' = &)

2 + &'
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Practical considerations

n We now have just two independent parameters, !
and "

n Both grow asymptotically large, one grows much 
faster than the other !≫"
n So treat " as a “slow-growing” constant
n So, ! is the important parameter

A fast sequential algorithm is the first and foremost 
priority: reduce the work 

n The seek among all such algorithms, those that can 
be executed fast (low $%)

n What class (remember our function clubs) grows 
slowly?

n Poly-logarithmic functions
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Practical measures:
parallelism (//ism) & speedup
n Speedup: How much faster does it run on processors,

compared to a single one.

!" ≡ $%
$&

n Parallelism: How much faster does the ideal parallel run 
on, compared to sequential

Π" ≡ $%
$(

n Speedup bounds:
n Linear Speedup: Speedup that grows linearly with ), !" =+), for 0 < + ≤ 1
n Ideal Speedup: linear speedup, with + = 1 no idle time, all 

processors busy all the time
n When ) > Π there will be idle time and hence non-ideal  

speedup
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Analyzing (blocks of) code

n Compose two functions, either in sequence 
or in parallel.
n Blocks executed in parallel (e.g., in a spawn-

sync block) they are in parallel
n Otherwise they execute in the usual 

sequential manner
n Also beware of conditional blocks of code

n Work is always added
n Span is added when in series
n Combined with max when in parallel
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Analyzing code

n Code may be  composed either in 
sequence or in parallel.
n Blocks executed in parallel (e.g., in a 

spawn-sync block)
n Or the usual (sequential) manner

n Work is always added
!" #; % = !" # + !" %

!" spawn #; % sync = !" # + !" %
n Span is

n Added when in series
!( #; % = !( # + !( %

n Combined with max when in parallel
!( spawn #; % sync = max !( # , !( %

23
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Parallelizing the ! " work Fib

n Now we have dependent 
computations 

n How to break the 
dependences?

Take a detour
1. First parallelize reductions
2. Then parallelize scans
3. Show that Fib is similar to a 

scan
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EfficientFib(n):
if (n<2) return 1;
X[0] = 1;
X[1] = 1;
for (i=2; i≤n; i++)

X[i%2] = X[(i-1)%2] +  X[i%2]; 
return X[n%2];



First parallelize reductions

Add up the elements of an array

! = #
$%&

'
([*]

n Sequential implementation
(linear) 
n This is also the lower bound

(need to read at least , inputs)
n For parallel algorithms, this (just the) work
n How to parallelize?

n How to break the dependence of one result 
(iteration) on the previous one?

n Divide and conquer to the rescue
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Reduce (A):
X=0;
for (j=1; j≤n; j+)

x = x + A[j];



D&C Reductions

n Work: remains linear

!" # = 2!"
#
2 + 1

n Just changed the order in which 
elements are added up (in a 
tree rather than left to right

n Can we parallelize it?
n Easy: spawn one call

n Span: becomes ( lg #
!+ # = !+

#
2 + 1

Victory!! On to newer challenges
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D&CReduce(lo, hi, A):
if (lo==hi) return A[lo];
else

mid = (hi+lo)/2;

spawn
x1 = D&CReduce(lo, mid, A);
x2 = D&CReduce(mid+1, hi, A);
sync
return (x1+x2);



Scan (prefix sum/max)

Add up the elements of an 
array A

![#] = &
'()

*
+[,]

n But return all partial answers
n Efficient sequential 

algorithm:

! # = - + # if # = 1
! # − 1 + +[#] if # > 1

n Work: 4 5
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SeqScan(A):
X[0] = A[0];
for (j=1; j≤n; j++);

X[j] =  X[j-1] + A[j];



Recursive (D&C) Scan

Same idea: divide into halves; 
(recursively) compute 
prefix sums, but now add 
the last answer of first half to 
each element of the second 
half.

n Work: now ! " lg " (master 
theorem again).  Extra work

n Can it be parallelized?
n What about the for loop
n Again use D&C + spawn 

sync
n Span: ! lg% "
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Scan(lo, hi):
if (lo==hi) X[i] = A[i];
return;
mid = (hi+lo)/2;
spawn
X[lo:mid] = Scan(lo, mid);
X[mid+1:hi] = Scan(mid+1, hi);
sync
//Update second half (for loop)
X[mid+1:hi] = X[mid]+X[mid+1:hi];

return;



Improving the Span

The for loop is killing us.  All 
iterations independent, 
but we are doing it with 
lg # span

n Inherent limitation of 
spawn sync 

n Need a new construct 
parallel loops

n Span is the max span of 
any loop body (θ(1) here)
n Overall span: ( lg) #
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Scan(lo, hi):
if (lo==hi) X[i] = A[i];
return;
mid = (hi+lo)/2;
spawn
X[lo:mid] = Scan(lo, mid);
X[mid+1:hi] = Scan(mid+1, hi);
sync
//Update second half (for loop)
parallel
X[mid+1:hi] = X[mid]+X[mid+1:hi];

return;



Parallel Loops

n The parallel keyword before a for loop indicates that 
all the iterations of the for loop can execute in parallel.

n Legal only if loop iterations are independent, i.e., an 
iteration does not use values computed in previous 
iterations.

for i in 0 to n-1:   C[i] = A[i]+B[i]
can be made parallel
parallel for i in 0 to n-1:   C[i] = foo(A[i], B[i])

n Example of illegal parallelization
for i in 0 to n-1:   A[i] = foo(A[i-1], B[i])

cannot be made parallel. Iteration i uses a value 
computed by iteration i-1, so must be executed before 
iteration i.  Introduces data race
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Is our parallel scan worth it?

n Extra work:
n ! " lg " vs ! "

n But span is ! lg " so it’s a fast parallel 
algorithm

n Two laws: work law the span law.  Both " and %
grow asymptotically, but" ≫ %. So,

' lg "
( ≫ lg " i.e.,
)*
% ≫ )+

n Work law dominates.  Unless the work can be 
brought down to ! " our parallel scan will be 
too slow
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Work optimal parallel scan

Chunking algorithm:
n Split input into ! chunks, of size "# each, one 

per processor.
n Each processor sequentially reduces its chunk
n All processors cooperate to scan these ! results
n Finally, each processor independently, 

compute the scan of it’s section, starting with 
the scan of it predecessor

n Double the work, but this is acceptable, e.g., 
100 processors will go 50x faster than the 
sequential algorithm
n Linear (not ideal) speedup
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Getting to lg n span

nSee 
https://en.wikipedia.org/wiki/Prefix_sum

Tree based (work out on excel spreadsheet)
n One pass up the tree to compute a reduction 

(and save all partial sums contributing to that)
n Second pass down the tree to update/repair the 

elements with the prefix results of everything to 
the left of the node

nWork is !(#), span is !(lg #)
Victory (finally)!!
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https://en.wikipedia.org/wiki/Prefix_sum


Back to Fibonacci

n Generalize to computing an 
array of all the Fib numbers 
up to !

n Lower bound:
n Is it  "(!) (that’s the size of the 

output)?
n No, processors may write 

outputs in parallel (as in scan)

n Recall memo-Fib: in each 
iteration, update one value 
using the previous and pre-
previous
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MemoFib(n):
F[0] = F[1] = 1;
for (i=2; j≤n; j++);

F[i] = F[i-1] + F[i-2];
//and just for kicks
F[i-1] = F[i-1]; // useless copy



Key idea: reduction (as a verb)

n How to reduce the Fib to a  scan/reduction
n Like in the memory-efficient version, copy 

n New to previous
n Previous to pre-previous

n Use matrix notation:
!"
!"#$ = 1 1

1 0
!"#$
!"#(

= 1 1
1 0

1 1
1 0

!"#(
!"#)

= 1 1
1 0 … 1 1

1 0
!$
!+
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Reduce Fib to reduction/scan

nDefine a constant 2×2matrix: # = 1 1
1 0'(

'()* = #()* 1
1

i.e., multiply the + − 1th power of # with the 
vector 11
n Computing Fib reduces to a reduction
n If all numbers are needed, do a scan
n Also note: all this is for pedagogic purposes 

only
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Scan in practice

nScan is a representative for problem that 
seem “inherently sequential”
n The inherent sequentiality can be broken if 

there is an associative binary operator
n Kogge & Stone 1973 (recursive convolution, 

IIR filters)
n Hardware:

n Fast multipliers
n Fast adders
n Double the work is acceptable
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