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Dynamic Programming Applications

Areas
§ Bioinformatics
§ Control theory
§ Operations research

Some famous dynamic programming algorithms
§ Unix diff for comparing two files
§ Smith-Waterman for (DNA) sequence alignment
§ Bellman-Ford for shortest path routing in networks
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Motivating Example: Fibonacci numbers

F(1) =  F(2) = 1
F(n) = F(n-1) + F(n-2)    n>2



Fibonacci numbers

F(1) =  F(2) = 1
F(n) = F(n-1) + F(n-2)    n>2

Simple recursive solution:

def fib(n) :
if n<=2: return 1
else: return fib(n-1) + fib(n-2)

What is the size of the call tree?

5

4 3

3 2

2 1

2 1



Fibonacci numbers

F(1) =  F(2) = 1
F(n) = F(n-1) + F(n-2)    n>2

Simple recursive solution:

def fib(n) :
if n<=2: return 1
else: return fib(n-1) + fib(n-2)

Problem:  exponential call tree

Can we avoid it?
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Efficient computation using a memo table

def fib(n, table) :
# pre: n>0, table[i] either 0 or contains fib(i) 
if n <= 2 : 

return 1
if table[n] > 0 :

return table[n]
result = fib(n-1, table) + fib(n-2, table)
table[n] = result
return result
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We use a memo table, never computing the same value 
twice.  How many calls now? 
Can we do better?
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Look ma, no table

def fib(n) :
if n<=2 : return 1
a,b = 1
c = 0
for i in range(3, n+1) :

c = a + b
a = b
b = c

return c
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Compute the values "bottom up”
Avoid the table, only store the previous two
same O(n) time complexity, constant space.

Only keeping the values we need.



Optimization Problems

In optimization problems a set of choices are 
to be made to arrive at an optimum, and sub 
problems  are encountered. 

This often leads to a recursive definition of a 
solution. However, the recursive algorithm is 
often inefficient in that it solves the same 
sub problem many times.

Dynamic programming avoids this repetition 
by solving the problem bottom up and storing 
sub solutions, that are (still) needed. 



Dynamic vs Greedy, Dynamic vs Div&Co

Compared to Greedy, there is no predetermined 
local choice of a sub solution, but a solution is chosen 
by computing a set of  alternatives and picking the 
best.

Dynamic Programming builds on the recursive 
definition of a divide and conquer solution, but avoids 
re-computation by storing earlier computed values, 
thereby often saving orders of magnitude of time.

Fibonacci: from exponential to linear

Another way of saying this is: Greedy only needs ONE best solution.



Dynamic Programming

Dynamic Programming has the following steps

- Characterize the structure of the problem, i.e., 
show how a larger problem can be solved 
using solutions to sub-problems 

- Recursively define the optimum

- Compute the optimum bottom up, storing values  
of sub solutions

- Construct the optimum from the stored data



Optimal substructure

Dynamic programming works when a problem 
has optimal substructure: we can construct 
the optimum of a larger problem from the 
optima of a "small set" of smaller problems.
! small: polynomial

Not all problems have optimal substructure.
Travelling Salesman Problem (TSP) does not 
have optimal substructure. 



Weighted Interval Scheduling

We studied a greedy solution for the interval 
scheduling problem, where we searched for the 
maximum number of compatible intervals.

If each interval has a weight and we search for the 
set of compatible intervals with the maximum sum of 
weights, no greedy solution is known.  
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Weighted Interval Scheduling

Weighted interval scheduling problem.
! Job j starts at sj, finishes at fj, and has value vj . 
! Two jobs compatible if they don't overlap.
! Goal:  find maximum value subset of compatible 

jobs.

Time
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Weighted Interval Scheduling

Assume jobs sorted by finish time:  f1  £ f2  £ . . . £ fn .
p(j) = largest index i < j such that job i is compatible with j,
in other words: p(j) is j’s latest predecessor; p(j) = 0 if j has no 
predecessors. Example:  p(8) = 5, p(7) = 3, p(2) = 0.
Using p(j) can you think of a recursive solution?

Time
0 1 2 3 4 5 6 7 8 9 10 11
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Recursive (either / or)  Solution

Notation.  OPT(j): optimal value to the problem consisting of job 
requests 1, 2, ..., j.

! Case 1:  OPT(j) includes job j.
– add vj to total value
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j)

! Case 2:  OPT(j) does not include job j.
– must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  j-1

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 



Either / or recursion

This is very often a first recursive solution method: 

! either some item is in and then there is some consequence

! or it is not, and then there is  another consequence, e.g. 
knapsack, see later slides:

Here: for each job j
either j is chosen

– add vj to the total value
– consider pj next 

or it is not
– total value does not change
– consider j-1 next
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input: s1,…,sn , f1,…,fn , v1,…,vn

sort jobs by finish times so that f1 £ f2 £ ... £ fn.

compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j == 0)

return 0
else

return max(vj + Compute-Opt(p(j)),Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Recursive Solution

What is the size of the call tree here?
How can you make it big, e.g. exponential?
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Analysis of the recursive solution

Observation.  Recursive algorithm considers exponential number 
of (redundant) sub-problems.

Number of recursive calls for family of "layered" instances 
grows like Fibonacci sequence.

3
4

5

1
2

p(1) = 0, p(j) = j-2
Code on previous slide becomes
Fibonacci: opt(j) calls

opt(j-1) and opt(j-2) 

5

4 3

3 2 2 1
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1 0

1 0 1 0
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input: n, s1,…,sn , f1,…,fn , v1,…,vn

sort jobs by finish times so that f1 £ f2 £ ... £ fn.
compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), 
M-Compute-Opt(j-1))

return M[j]
}

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache;
look up as needed.

Global array
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Weighted Interval Scheduling:  Running Time

Claim.   Memoized version of M-Compute-Opt(n) takes 
O(n log n) time.

! M-Compute-Opt(n) fills in all entries of M ONCE
in constant time

! Since M has n+1 entries, this takes O(n) 

! But we have sorted the jobs

! So Overall running time is O(n log n).  
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Weighted Interval Scheduling:  Finding a Solution

Question. Dynamic programming computes optimal value. What if 
we want the choice vector determining which intervals are 
chosen.
Answer. Do some post-processing, walking BACK through the 
dynamic programming  table.

Run Dynpro-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}



Do it, do it: Recursive
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S   F   V
A    1   5    7
B    2   9    8
C    4  13    3
D    6  12   5
E    9  10  10
F   11  15    1

A
B

C
D

E
F

1  A
2  B
3  E
4  D
5  C
6  F

Sort in F order Determine p array
1,A:   0
2,B:   0
3,E:   2,B   
4,D:   1,A
5,C:   0
6,F:   3,E

Do the recursive algorithm. 
Left: take (+V) next p(j). Right: don’t take (0), next j-1

6,F

5,C3,E
+1 0

0 1,A

2,B

0 0

0

0

+10

+8

+7
1,A

2,B

+7
0

0 0

0

0

+8

0

1,A

2,B

+7
0

0 0

0

0

+8

0

0 1,A

2,B

0 0

0

0

+10

+8

+7

Up:       edge:  add,    
node: take the max 

0
0 3,E1,A

4,D0

+7

+3

0

0

0+5

19

18

88

18

18

187

8 8

6,F + 3,E  + 2,B = 19
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Weighted Interval Scheduling:  Bottom-Up
Bottom-up dynamic programming, build a table.

By going in bottom up order M[p(j)] and M[j-1] are 
present when M[j] is computed.  This takes O(nlogn) for 
sorting and O(n) for Compute, so O(nlogn) 

input: n, s1,…,sn , f1,…,fn , v1,…,vn

sort jobs by finish times so that f1 £ f2 £ ... £ fn.

compute p(1), p(2), …, p(n)

Dynpro-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}



Do it, do it: Dynamic Programming
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M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], 
M[j-1])

S   F   V
A    1   5    7
B    2   9    8
C    4  13    3
D    6  12   5
E    9  10  10
F   11  15    1

Draw Intervals
A

B
C

D
E

F

1  A
2  B
3  E
4  D
5  C
6  F

Sort in F order Determine p array
1,A:   0
2,B:   0
3,E:   2,B   
4,D:   1,A
5,C:   0
6,F:   3,E

0   7     8     18   18   18  19 

0  1,A  2,B  3,E 4,D 5,C  6,F
Walk back to determine choices

Create M table

6,F:  take gets you 19, don’t gets you 18, so take     F
3,E:  take gets you 18, don’t gets you 8, so take       E
2,B:  take gets you 8, don’t gets you 0, so take        B
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Computing the p array

Claim.   Memoized version of M-Compute-Opt(n) takes 
O(n log n) time.

! M-Compute-Opt(n) fills in all entries of M ONCE
in constant time

! Since M has n+1 entries, this takes O(n) 

! But we have sorted the jobs

! So Overall running time is O(n log n).  
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Computing the latest-predecessor array

Visually, it is “easy” to determine p(i), the largest index i < j 
such that job i is compatible with j.  For the example below:

p[1…8] = [0, 0, 0, 1, 0, 2, 3, 5]

How about an algorithm?  Or even as a human, try it without the 
visual aid (give it 5 minutes)

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5



28

Computing the latest-predecessor array

Visually, it is “easy” to determine p(i), the largest index i < j 
such that job i is compatible with j.  For the example below:

p[1…8] = [0, 0, 0, 1, 0, 2, 3, 5]

How about an algorithm?  Or even as a human, try it without the 
visual aid (give it 5 minutes)

Time

Activity A1 A2 A3 A4 A5 A6 A7 A8
Start (s) 1  3  0  4  3  5  6  8
Finish (f) 4  5  6  7  8  9 10 11
p                                   



Evnt LFSF ILFSF p(x)=y

s3     0    0   p(3)=0
s1     0    0   p(1)=0
s2     0    0   p(2)=0
s5     0    0   p(5)=0
f1     4    1
s4     4    1   p(4)=1
f2     5    2
s6     5    2   p(6)=2
f3     6    3
s7     6    3   p(7)=3
f4     7    4
f5     8    5
s8     8    5   p(8)=5
f6     9    6
f7    10    7
f8    11    8
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Computing the latest-predecessor array

Spoiler alert:

1. Treat all the start and finish times as 
“events” and sort them in increasing 
order (resolve ties any way, as long as 
all the f events are before the s 
events)

2. Have global variables LFSF and ILFSF 
(for “Latest_Finish_So_Far,” and 
“Index_of_LFSF”)

3. Process events in order as follows:
a. If it is a finish event, fi then

update LFSF and ILFSF
b. If it is a start event, si then set

p(i) to ILFSF



Discrete Optimization Problems

Discrete Optimization Problem (S,f)
! S: 

– Set of solutions of a problem, satisfying some constraint
! f : S ® R

– Cost function associated with feasible solutions 
! Objective: find an optimal solution xopt such that

f(xopt) £ f(x)  for all x in S (minimization)
or  f(xopt) ≥ f(x)  for all x in S (maximization)

! Ubiquitous in many application domains
– planning and scheduling
– VLSI layout
– pattern recognition
– bio-informatics
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Knapsack Problem

Knapsack problem.
! Given n objects and a "knapsack” of capacity W
! Item i has a weight wi > 0 and value or profit vi > 0.
! Goal:  fill knapsack so as to maximize total value.

What would be a Greedy solution?

repeatedly add item with maximum vi / wi ratio …

Does Greedy work?

Capacity W = 7, Number of objects n = 3
w = [5,  4, 3]       
v =  [10, 7, 5]        (ordered by vi / wi ratio)
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Either / or Recursion for Knapsack Problem

Notation:  OPT(i, w) = optimal value of max weight subset that 
uses items 1, …, i with weight limit w. 

! Case 1:  item i is not included:
– OPT includes best of { 1, 2, …, i-1 } using weight limit w 

! Case 2:  item i is included, if it can be included: wi <= w
– new weight limit = w – wi
– OPT includes best of { 1, 2, …, i–1 } using weight limit w-wi

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

# 

$ 
% 

& 
% 
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Input: n, W, weights w1,…,wn,
values v1,…,vn

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 0 to W
if wi > w :

M[i, w] = M[i-1, w]
else :

M[i, w] = max (M[i-1, w], 
vi + M[i-1, w-wi ])

return M[n, W]

Knapsack Problem: Dynamic Programming

Knapsack.  Fill an n+1 by W+1 array.

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W = 11

Do it for:
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

W + 1

W = 11
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

At 1,1 we can fit item 1 and
from then on, all we have is
item 1
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

1

0

1

1

2

0

6

1

3

0

7

1

4

0

7

1

5

0

7

1

6

0

7

1

7

0

7

1

8

0

7

1

9

0

7

1

10

0

7

1

11

0

7

1

W + 1

W = 11

At 2,2 we can either not take item 2 (value 1  (previous row[2]) 
or we can take  item 2 (value 6 previous row[0]+ 6)
At 2,3 we can either not take item 2 (value 1) 
or we can take item 2 and item 1 (value 7).  
From then on we can fit both items 1 and 2 (value 7)
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

1

0

1

1

1

2

0

6

6

1

3

0

7

7

1

4

0

7

7

1

5

0

7

18

1

6

0

7

19

1

7

0

7

24

1

8

0

7

25

1

9

0

7

25

1

10

0

7

25

1

11

0

7

25

1

W + 1

W = 11

From 3,0 to 3,4 we cannot take item 3.
At 3,5 we can either not take item 3 (value 7) 
or we can take  item 3 (value 18)
At 3,6 we can either not take item 3 (value 7) 
or we can take item 3 (value 19), 
etc.,.
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Input: n, W, M, weights w1,…,wn,
values v1,…,vn

for i = 1 to n:
S[i] = 0

j = W

for i = n downto 1
if M[i, j] > M[i-1, j]] then:

S[i] = 1
j -= w[i]

return S

Knapsack Problem: Dynamic Programming

Knapsack.  Find the set of items in 
the solution.

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W = 11

Do it for:



39

Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  40

How do we find the objects
in the optimum solution?

Walk back through the table!!
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  40
n=5  Don’t take object 5  (7+28=35 < 40)
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  40
n=5  Don’t take object 5
n=4  Take object 4 (18+22=40>25)
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  40
n=5  Don’t take object 5
n=4  Take object 4
n=3  Take object 3

and now we cannot take anymore,
so choice set is {3,4}, 

choice vector is [0,0,1,1,0]
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Knapsack Problem:  Running Time

Running time.  Q(nW).
! Not polynomial in input size!  

– W can be exponential in n 

! Decision version of Knapsack is NP-complete.  
[Chapter 34 CLRS]

Knapsack approximation algorithm.  
! There exists a poly-time algorithm that produces a 

feasible solution that has value within 0.01% of 
optimum. 


