Divide and Conquer: Counting Inversions

Rank Analysis

- Collaborative filtering
- matches your preference (books, music, movies, restaurants) with that of others
- finds people with similar tastes
- recommends new things to you based on purchases of these people
- The basis of collaborative filtering: compare the similarity of two rankings

What's similar?

Given numbers 1 to n (the things) rank these according to your preference

- You get some permutation of 1..n
- Compare to someone else's permutation

Extreme similarity

- somebody else's ranking is exactly the same

Extreme dissimilarity

- somebody else's ranking is exactly the opposite

In the middle:

- count the number of out of place rankings

Simplify it

Count the number of inversions of a ranking

- $r_{1}, r_{2}, \ldots, r_{n}$
- count the number of out of order pairs
- i<j $r_{i}>r_{j}$
- eg: 214352 inversions: $(2,1)(4,3)$

Why is this synonymous with comparing two different rankings?

Because we can re-number the things, such that one of the rankings (e.g. my ranking) becomes $1,2, \ldots, n$ my ranking: 1,2,...,5 your ranking 2,1,4,3,5 your \#1 is my \#2, your \#2 is my \#1 your \#3 is my \#4, your \#4 is my \#3

Visualizing inversions

Visualizing inversions

Careful: don't count inversions twice!

Sort

Does Bubble sort count inversions? Bubble sort is $O\left(n^{2}\right)$

Do it on: 42351 and see what happens

Do bubble sort, show each swap, count inversions

every swap takes out 1 inversion, and thus 1 line crossing

Can we do better?

Notice: there are potentially $n^{\star}(n-1) / 2$ inversions. WHY?
Reverse order, all pairs are out of orders
Bubble sort counts each individual swap = inversion. To do better we must not count each individual inversion.

Think of merge sort

- in merge sort we do not swap consecutive elements that are out of order as in bubble sort, we make larger distance swaps
- if we can merge sort and keep track of the number of inversions we may get an $O(n \log n)$ algorithm
- Key observation: when an element from right is merged in, it "jumps" over all remaining elements of left !!

Eg: [42351]

sort $\left[\begin{array}{lllll}4 & 2 & 3 & 5 & 1\end{array}\right]$

- sort LEFT: [4 2 3]
- sort left: [4 2] \rightarrow [2 4]:1 inversion
- sort right: [3]
- merge(left,right) \rightarrow [2 34 4] 1 inversion (3 jumps over 4)
- sort RIGHT: [5 1] \rightarrow [15] 1 inversion
- merge(LEFT,RIGHT) \rightarrow [1 2334 5] 3 inversions (1 jumps over 2,3 \& 4)

Total inversions: $1+1+1+3=6$ (go check the visualization)

The algorithm

While merging in merge sort keep track of the number of inversions.
When merging an element from left: no inversions added
When merging an element from right: how many inversions added?

```
left \(_{i}\)...
```

right $_{j} .$.
As many elements as are remaining in left, because the element from the right jumps over all the remaining elements from left

Counting Inversions: Algorithm

```
count_inversions(list)
    if list has one element
    return 0
    divide list into two halves A and B
    r}\mp@subsup{\textrm{A}}{\textrm{A}}{= count_inversions(A)
    r }\mp@subsup{r}{B}{}=\mathrm{ count_inversions(B)
    rm
    return ra
merge-and-count(L, R, list)
    count = 0
    while L and R not empty:
    put smallest of Li and Rj in list
    if Rj smallest
        add number of elements remaining in L to count
    if L or R empty:
    append the other one to list
    return count
```


Running time

Just like merge sort, the sort and count algorithm running time satisfies:

$$
T(n)=2 T(n / 2)+c n
$$

Running time is therefore $O(n \log n)$

