
Closest Pair of Points

Cormen et.al 33.4

2

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with
smallest Euclidean distance between them.

Fundamental geometric problem.
! Graphics, computer vision, geographic information

systems, molecular modeling, air traffic control.

Simple solution?

3

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with
smallest Euclidean distance between them.

Fundamental geometric problem.
! Graphics, computer vision, geographic information

systems, molecular modeling, air traffic control.

Brute force solution. Compare all pairs of points: O(n2).

1-D version?

1D, 2D versions

1D: Sort the points: O(n logn)
Walk through the sorted list and find the min dist pair

2D: Does it extend to 2D?

sort p-s by x: find min pair

or

sort p-s by y: find min pair

what can we do with those?

The shortest distance pair in
X direction is not necessary
the shortest distance pair.

The shortest distance pair in
Y direction is not necessarily
the shortest distance pair.

Nothing really.

Divide and Conquer Strategy

Divide points into left half Q and right
half R (O(n))

Find closest pairs in Q and R

Combine the solutions (min of
min_Q and min_P)

What's the problem? What did we miss?

Q RA point in Q may be closer to a point in R
than the min pair in Q and the min pair in R,
so we missed the true minimum distance pair.

We need to take point pairs between Q and R into account.
We need to do this in O(n) time to keep complexity at O(n logn).

6

Closest Pair of Points

Algorithm.
! Divide: draw vertical line L so that roughly ½n points on each

side.
To do this efficiently we sort the points once by x coordinate (

O(n logn)). We also sort the points by y (needed later). Then we split
(O(1)) the problem P in two, Q (left half) and R (right half).

L

Q R

Closest Pair of Points

Algorithm.
! Divide: draw vertical line L so that roughly ½n points on each

side.
! Recur: find closest pair in each side recursively.

12

21

L

Q R

Closest Pair of Points
Algorithm.
! Divide: draw vertical line L so that roughly ½n points on each side.
! Recur: find closest pair in each side recursively.
! Combine: find closest pair with one point in each side. Return best

of 3 solutions.
Seems like Q(n2) because O(n) points may have to be compared in
Combine step. Or can we narrow the Q,R point pairs we look at?

12

21
8

L

Q R

Combining the solutions
Given Qs min pair (q1 ,q2) and Rs min pair (r1 ,r2),

δ=min(dist(q1 ,q2), dist(r1 ,r2)).
What can we do with δ to narrow the number of points in Q and R
that we need to compare?

12

21

d = min(12, 21)

L

Find closest pair with one point in each side, assuming distance < d.

10

Combining the solutions

Find closest pair with one point in each side, assuming distance < d.
! Observation: only need to consider points within d of line L.

12

21

d

L

d = min(12, 21)

11

Combining the solutions

Find closest pair with one point in each side, assuming distance < d.
! Observation: only need to consider points within d of line L.
! But we can’t afford to look at all pairs of points!

12

21

d

L

d = min(12, 21)

12

12

21

1

2

3

4
5

6

7

d

Combining the solutions

Find closest pair with one point in each side, assuming distance < d.
! Observation: only need to consider points within d of line L.
! Select sorted by y coordinate points in 2d-strip.
! But how many points à pairs can there be in the strip?

L

d = min(12, 21)

First thought: points: O(n) à pairs O(n2)

13

12

21

1

2

3

4
5

6

7

d

Here’s the kicker:

Find closest pair with one point in each side, assuming distance < d.
! Observation: only need to consider points within d of line L.
! Select sorted by y coordinate points in 2d-strip.
! For each point in the strip only check distances of those

within 7 positions in sorted list!

L

d = min(12, 21)

L-δ L L+δ

δ/2

δ/2

Consider 2 rows of four δ/2 x δ/2
boxes inside strip, starting at y
coordinate of the point.

At most one point can live
in each box! WHY?

Why is checking 7 next points sufficient?

.
Because max distance between
two points in a box =

€

2
2
δ < δ

L-δ L L+δ

δ/2

δ/2

Consider 2 rows of four δ/2 x δ/2
boxes inside strip.

At most one point can live
in each box!

If a point is more than 7 indices
away, its distance must be greater
than δ. So combining solutions can
be done in linear time, because each
point checks 7 (not O(n)) “following”
Points. “Following?”

“Following” in ordered Y direction.

Why is checking 7 next points sufficient?

.

Do we always need to check 7 points?

NO!!

! As soon as a Y coordinate of next point is > δ away, we can stop.

16

17

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
compute line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

scan points in d strip in y-order and compare
distance between each point next neighbors until
distance > d. (At most 7 of these)
If any of these distances is less than d, update d.

return d.
}

O(n)

2T(n / 2)

O(n)

Running time: O(n log n)

