Closest Pair of Points

Cormen et.al 33.4

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric problem.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Simple solution?

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric problem.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Brute force solution. Compare all pairs of points: $O\left(n^{2}\right)$.
1-D version?

1D, 2D versions

1D: Sort the points: $O(n \log n)$
Walk through the sorted list and find the min dist pair
2D: Does it extend to 2D?
sort p-s by x : find min pair or
sort p-s by y : find min pair

The shortest distance pair in X direction is not necessary the shortest distance pair.

The shortest distance pair in Y direction is not necessarily the shortest distance pair.

Nothing really.

Divide and Conquer Strategy

Divide points into left half Q and right half $R(O(n))$

Find closest pairs in Q and R
Combine the solutions (min of $\min _Q$ and $\min _P$)

What's the problem? What did we miss?
A point in Q may be closer to a point in $R \quad Q \mid R$ than the min pair in Q and the min pair in R, so we missed the true minimum distance pair.

We need to take point pairs between Q and R into account. We need to do this in $O(n)$ time to keep complexity at $O(n \log n)$.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

To do this efficiently we sort the points once by x coordinate ($O(n \operatorname{logn})$). We also sort the points by (needed later). Then we split $(O(1))$ the problem P in two, Q (left half) and R (right half).

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Recur: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Recur: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. Return best of 3 solutions.
Seems like $\Theta\left(n^{2}\right)$ because $O(n)$ points may have to be compared in Combine step. Or can we narrow the Q, R point pairs we look at?

Combining the solutions

Given Qs min pair (q_{1}, q_{2}) and Rs min pair (r_{1}, r_{2}), $\delta=\min \left(\operatorname{dist}\left(q_{1}, q_{2}\right), \operatorname{dist}\left(r_{1}, r_{2}\right)\right)$.
What can we do with δ to narrow the number of points in Q and R that we need to compare?

Find closest pair with one point in each side, assuming distance $<\delta$.

Combining the solutions

Find closest pair with one point in each side, assuming distance < δ. - Observation: only need to consider points within δ of line L.

Combining the solutions

Find closest pair with one point in each side, assuming distance < δ.

- Observation: only need to consider points within δ of line L.
- But we can't afford to look at all pairs of points!

Combining the solutions

Find closest pair with one point in each side, assuming distance < δ.

- Observation: only need to consider points within δ of line L.
- Select sorted by y coordinate points in 2δ-strip.
- But how many points \rightarrow pairs can there be in the strip? First thought: points: $O(n) \rightarrow$ pairs $O\left(n^{2}\right)$

Here's the kicker:

Find closest pair with one point in each side, assuming distance < δ.

- Observation: only need to consider points within δ of line L.
- Select sorted by y coordinate points in 2δ-strip.
- For each point in the strip only check distances of those within 7 positions in sorted list!

Why is checking 7 next points sufficient?

Consider 2 rows of four $\delta / 2 \times \delta / 2$ boxes inside strip, starting at y coordinate of the point.

At most one point can live in each box! WHY?

Because max distance between two points in a box $=\frac{\sqrt{2}}{2} \delta<\delta$

$$
L-\delta \quad L \quad L+\delta
$$

Why is checking 7 next points sufficient?

Consider 2 rows of four $\delta / 2 \times \delta / 2$
 boxes inside strip.

At most one point can live in each box!

If a point is more than 7 indices away, its distance must be greater than δ. So combining solutions can be done in linear time, because each point checks 7 (not $O(n)$) "following" Points. "Following?"

$$
L-\delta \quad L \quad L+\delta
$$

"Following" in ordered Y direction.

Do we always need to check 7 points?

NO!!

- As soon as a Y coordinate of next point is $>\delta$ away, we can stop.

Closest Pair Algorithm

```
Closest-Pair(p
    compute line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    scan points in \delta strip in y-order and compare
    distance between each point next neighbors until
    distance > \delta. (At most 7 of these)
    If any of these distances is less than }\delta\mathrm{ , update }\delta\mathrm{ .
    return \delta.
}
```

Running time: $O(n \log n)$

