Colorado State University

CS 320 Fall 2023 Solving recurrences for Divide & Conquer

Sanjay Rajopadhye Colorado State University

Divide & Conquer

- Break up the problem into (multiple, smaller) parts
- Solve each of the parts recursively
- Combine the solution of each of the parts into a solution of the original problem

First example: Merge sort

- Divide the array into two halves
- Recursively sort each half
- Merge the two sorted halves

Analysis Divide O(1)Merge O(n)What about the recursive calls?

 $2T\left(\frac{n}{2}\right)$

John von Neumann (1945)

Complexity of merge

Time: O(n)

- Often with two arrays of length n
- Can you do (a constant factor) better?

Recurrence relations

- A recurrence relation for a sequence, $\{a_n\}$ is and equation that expresses a_n in terms of one or more of the previous elements of the sequence, $a_1, a_2, \dots a_{n-1}$
 - A special kind of recursive function
- There may be base cases, and the equation hold for $n \ge n_0$ for some constant n_0
 - Example: $a_n = 2a_{n-1} + 1$ and $a_1 = 1$
 - After setting up the recurrence relation, we solve it

Recurrence relation for Merge-sort

- Define the number of comparisons to sort an input of length n as: T(n)
- Use the structure of the D&C algorithm to define an equation/relation for T(n)

 $T(n) \leq \begin{cases} c & \text{if } n = 1\\ T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) + T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn & \text{otherwise} \end{cases}$

Solving the Recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + cn & \text{otherwise} \end{cases}$$

- Solution (*closed form*): $T(n) = \Theta(n \log n)$
 - Number of techniques
 - Unrolling the recurrence
 - Repeated substitution
 - See a pattern, guess (i.e., make a hypothesis), and then, prove by induction

Unroll $T(n) = \begin{cases} c & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + cn & \text{otherwise} \end{cases}$

8

Seeing the pattern

- What is the "*label*" of each node?
- When does the label become "small enough" (base case)
- How many levels in the tree? [Hint: use the above two]
- How many nodes at each level?
- What is the "contribution" of each node?
- What is the contribution of each level?
- How many *leaves*?
- Contribution of the leaves (different from contribution of other levels)

Repeated substitution for $T(n) = \begin{cases} c & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + cn & \text{otherwise} \end{cases}$

Claim:
$$T(n) = cn \log_2 n$$

$$T(n) = 2T(n/2) + cn$$

= $4T(n/4) + cn + 2cn/2$
= $8T(n/8) + cn + cn + 4cn/4$
...
= $2^{\log_2 n}T(1) + \underbrace{cn + \dots + cn}_{\log_2 n} \leftarrow \frac{\text{This reaches } T(1) \text{ when}}{n = 2^{\lg n}}$
by definition of $\lg n$

$$= O(n\log_2 n)$$

Binary search

function BS(x, start, end)
 if (end <= start)
 return A[start]
 mid = (end + start)/2
 if A[mid] < x
 return BS(x, mid, end)
 return BS(x, start, mid-1)</pre>

- What is the recurrence?
- Apply repeated substitution (on doc cam or exercise)

Find max in an unsorted array

Algorithm:

- Base case n=1
- Otherwise: find the max of the two halves, and return the max of that

```
function FM(start, end)
  if (end = start)
    return A[start]
 mid = (end + start)/2
  return max( FM(start, mid-1), FM(mid, end) )
```

Find max in an unsorted array

Recurrence: base case: T(1) = 0

Otherwise:
$$T(n) = 2T\left(\frac{n}{2}\right) + 1$$

 $= 4T\left(\frac{n}{4}\right) + 2 + 1$
 $= 8T\left(\frac{n}{8}\right) + 4 + 2 + 1$
:
 $= 2^{k}T\left(\frac{n}{2^{k}}\right) + 2^{k-1} + 2^{k-2} + \cdots 2^{0}$
 $= 2^{k}T\left(\frac{n}{2^{k}}\right) + 2 \cdot 2^{k-1} - 1$
 $= 2^{k}T\left(\frac{n}{2^{k}}\right) + 2^{k} - 1$

Bae case is reached when $2^k = n$, i.e., $k = \lg n$, So $T(n) = 0 + 2^{\lg n} - 1 = n - 1$

Another example

function foo(A, B) // the size of A is n
 if (n == 1):
 return fuzz(A, B) // base case, fuzz is
constant time

// Process A to build two parts, A_0 and A_1 of size n/2 each

 $C_0 = foo (A_0, B)$ $C_1 = foo (A_0, B)$ return buzz(C_0, C_1) // buzz is O(n²)

General Divide & Conquer

Master Theorem

- Let $a \ge 1, b > 1, n = b^k$ and T(n) be given by $T(n) = aT\left(\frac{n}{b}\right) + cn^d$
 - The solution of the recurrence is

$$T(n) = \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

Merge-sort by master theorem

a = 2, b = 2, d = 1

So,
$$a = 2$$
, and $b^d = 2$

... and the solution is

 $T(n) = O(n^d \log n) = O(n \log n)$

Divide & Conquer call tree

Function foo(A) //size n
 if (n <= b) return (base(A)
A₁ ... A_a = divide() // size n/b
// Recurse
 C₁ = foo(A₁)
 E
 C_a = foo(A_a)
return combine(C₁, ..., C_a)

- Base is constant time
- Divide and combine takes O(n^d)

 $f(n) = af(n/b) + n^d$ f(1) = c \leftarrow does not play a role, as we only care about O

Colorado State University 19

12

Three Cases for $r = (a/b^d)$

Geometric series:
$$\sum_{i=0}^{k} r^{i} = \frac{r^{k+1}-1}{r-1}$$
 Here $r = (a/b^{d})$

r < 1 e.g. $r = \frac{1}{2} \frac{1+1}{2} + \frac{1}{4} + \dots < 2$ for any k

2.
$$r = 1 \sum_{i=0}^{k} 1^{i} = k+1 = O(k)$$

3. r > 1 e.g. r = 2 $1 + 2 + 4 + 2^{k} = 2^{k+1} - 1 = O(2^{k})$

13

The three cases in practice

T(n) = 2T(n/2) + n // mergesort

r = 1 a=2, b=2, d=1 r = a/b^d=1
$$n^{1} \sum_{i=0}^{\log n} 1^{i}$$
 = n (log n +1)
T(n) = O(n log n)

T(n) = 2T(n/2) + 1 // e.g. recursive max in array size n: if n=1, then the element is the max.

a=2, b=2, d=0 r = a/b^d=2 $n^{0} \sum_{i=0}^{\log n} 2^{i} = (2^{\log n})^{i+1} - 1)/(2-1) = (2n-1)/1$ T(n)= O(n)

T(n) = 2T(n/2) + n² r < 1 a=2, b=2, d=2 r =- a/b^d=1/2 n² $\sum_{i=0}^{\log n} (\frac{1}{2})^{i}$ = n² (1+1/2+1/4+...) < 2 n² T(n) = O(n²)

Draw trees for these and do the analysis, as in slides 9, 10, 11

14

Towers of Hanoi

- Move all disks to third peg, without ever placing a larger disk on a smaller one.
- What's the recurrence relation? $a_n = 2a_{n-1} + 1$ with the base case that $a_1 = 1$
- Let's solve by repeated substitution
 - Plug in the definition
 - Do the algebra to collect all the non-recursive expressions together
 - Identify a pattern
 - Determine how many times the pattern occurs until we hit the base case

Hanoi by repeated substitution

- T(n) = 2T(n 1) + 1= 2(2T(n - 2) + 1) + 1 = 4T(n - 2) + 2 + 1 = 4(2T(n - 3) + 1) + 2 + 1 = 8T(n - 3) + 4 + 2 + 1
- What is the label and how is it changing?
- What about the other terms?
- When do we hit the base case?

Hanoi by repeated substitution

T(n) = 2T(n-1) + 1

$$= 2(2T(n-2) + 1) + 1$$

= $4T(n-2) + 2 + 1$
= $4(2T(n-3) + 1) + 2 + 1$
= $8T(n-3) + 4 + 2 + 1$
:
= $2^{i}T(n-i) + \sum_{i=0}^{i-1} 2^{j}$

When does the label become 1?

• When i = n - 1 So our solution is

Hanoi by repeated substitution

$$T(n) = 2^{n-1}T(1) + \sum_{j=0}^{n-2} 2^j$$
$$= \sum_{j=0}^{n-1} 2^j = 2^n - 1 = \Theta(2^n)$$

This is a geometric series

The Master Theorem does not apply