ColoradoState University

CS 320 Fall 2023 Solving recurrences for Divide \& Conquer

Sanjay Rajopadhye
Colorado State University

Divide \& Conquer

- Break up the problem into (multiple, smaller) parts
- Solve each of the parts recursively
- Combine the solution of each of the parts into a solution of the original problem

First example: Merge sort

- Divide the array into two halves
- Recursively sort each half
- Merge the two sorted halves

Analysis
Divide 0 (1)

\mathbf{A}	L	G	O	R	I	T	H	M	S

Merge 0 (n)

A	L	G	O	R
\mathbf{A}	G	L	O	R

\mathbf{I}	\mathbf{T}	\mathbf{H}	\mathbf{M}	\mathbf{S}

What about the recursive calls?
$2 T\left(\frac{n}{2}\right)$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{A} & \mathbf{G} & \mathbf{H} & \mathbf{I} & \mathbf{L} & \mathbf{M} & \mathbf{O} & \mathbf{R} & \mathbf{S} & \mathbf{T} \\
\hline
\end{array}
$$

Colorado State University 3

Complexity of merge

- Time: O(n)

Space: $O(n)$

- Often with two arrays of length n
- Can you do (a constant factor) better?

Recurrence relations

- A recurrence relation for a sequence, $\left\{a_{n}\right\}$ is and equation that expresses a_{n} in terms of one or more of the previous elements of the sequence, $a_{1}, a_{2}, \ldots a_{n-1}$
- A special kind of recursive function
- There may be base cases, and the equation hold for $n \geq n_{0}$ for some constant n_{0}
- Example: $a_{n}=2 a_{n-1}+1$ and $a_{1}=1$
- After setting up the recurrence relation, we solve it

Recurrence relation for Merge-sort

- Define the number of comparisons to sort an input of length n as: $T(n)$
- Use the structure of the D\&C algorithm to define an equation/relation for $T(n)$
$T(n) \leq\left\{\begin{array}{cc}c & \text { if } n=1 \\ T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left[\left.\frac{n}{2} \right\rvert\,\right)+c n\right. & \text { otherwise }\end{array}\right.$

Solving the Recurrence

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+c n & \text { otherwise }
\end{array}\right.
$$

- Solution (closed form):

$$
T(n)=\Theta(n \log n)
$$

- Number of techniques
- Unrolling the recurrence
- Repeated substitution
- See a pattern, guess (i.e., make a hypothesis), and then, prove by induction

$$
\text { Unroll } T(n)=\left\{\begin{array}{cc}
c & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+c n & \text { otherwise }
\end{array}\right.
$$

Seeing the pattern

- What is the "label" of each node?
- When does the label become "small enough" (base case)
- How many levels in the tree? [Hint: use the above two]
- How many nodes at each level?
- What is the "contribution" of each node?
- What is the contribution of each level?
- How many leaves?
- Contribution of the leaves (different from contribution of other levels)

Repeated substitution for $T(n)=\left\{\begin{array}{cc}c & \text { if } n=1 \\ 2 T\left(\frac{n}{2}\right)+c n & \text { otherwise }\end{array}\right.$

Claim: $T(n)=c n \log _{2} n$

$$
\begin{array}{rlrl}
T(n) & =2 T(n / 2) & +c n \\
& =4 T(n / 4) & +c n+2 c n / 2 \\
& =8 T(n / 8) & +c n+c n+4 c n / 4 \\
& \cdots \\
& =2^{\log _{2} n} T(1)+\underbrace{c n+\cdots+c n}_{\log _{2} n} \\
& =O\left(n \log _{2} n\right)
\end{array}
$$

$$
\begin{aligned}
& \cdots \\
& =2^{\log _{2} n} T(1)+c n+\cdots+c n \quad \text { This reaches } T(1) \text { when }
\end{aligned}
$$

$$
=2^{\log _{2} n} T(1)+\underbrace{c n+\cdots+c n}_{\log _{2} n} \longleftarrow \begin{gathered}
n=2 \lg n \\
\text { by definition of } \lg n
\end{gathered}
$$

Binary search

function BS(x, start, end)
if (end <= start) return A[start]
mid $=$ (end + start)/2
if $A[m i d]<x$
return $B S(x$, mid, end)
return BS(x, start, mid-1)

What is the recurrence?

- Apply repeated substitution (on doc cam or exercise)

Find max in an unsorted array

Algorithm:

- Base case $\mathrm{n}=1$
- Otherwise: find the max of the two halves, and return the max of that
function FM(start, end)
if (end = start) return A[start]
mid $=($ end + start $) / 2$
return $\max (\mathrm{FM}($ start, mid-1), FM(mid, end))

Find max in an unsorted array

Recurrence: base case: $T(1)=0$
Otherwise: $T(n)=2 T\left(\frac{n}{2}\right)+1$
$=4 T\left(\frac{n}{4}\right)+2+1$
$=8 T\left(\frac{n}{8}\right)+4+2+1$
:
$=2^{k} T\left(\frac{n}{2^{k}}\right)+2^{k-1}+2^{k-2}+\cdots 2^{0}$
$=2^{k} T\left(\frac{n}{2^{k}}\right)+2 \cdot 2^{k-1}-1$
$=2^{k} T\left(\frac{n}{2^{k}}\right)+2^{k}-1$
Bae case is reached when $2^{k}=n$, i.e., $k=\lg n$, So $T(n)=0+2^{\lg n}-1=n-1$

Another example

function foo(A, B) // the size of A is n if ($n==1$): return fuzz(A, B) // base case, fuzz is constant time
// Process A to build two parts, A_{\varnothing} and A_{1} of size n/2 each
$C_{0}=$ foo $\left(A_{0}, B\right)$
$C_{1}=$ foo ($\left.A_{0}, B\right)$ return buzz $\left(C_{0}, C_{1}\right) / /$ buzz is $O\left(n^{2}\right)$

General Divide \& Conquer

function foo(parameters) // the size of A is n if ($\mathrm{n}<=\mathrm{b}$): // base case return fuzz(A, B) // constant time
// Divide input into a parts, each of size n/b divide()
// Make a calls to foo(new parameters) // size is n/b return combine (r_{1}, \ldots, r_{a})
// Complexity of divide and combine is $O\left(n^{d}\right)$

Master Theorem

- Let $a \geq 1, b>1, n=b^{k}$ and $T(n)$ be given by

$$
T(n)=a T\left(\frac{n}{b}\right)+c n^{d}
$$

- The solution of the recurrence is

$$
T(n)=\left\{\begin{array}{cc}
O\left(n^{d}\right) & \text { if } a<b^{d} \\
O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\
O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}
\end{array}\right.
$$

Merge-sort by master theorem

- $a=2, b=2, d=1$
- So, $a=2$, and $b^{d}=2$
... and the solution is

$$
T(n)=O\left(n^{d} \log n\right)=O(n \log n)
$$

Divide \& Conquer call tree

Function foo(A) //size n
if ($n<=b$) return (base(A)
$\mathrm{A}_{1} \ldots \mathrm{~A}_{a}=$ divide() // size n / b
// Recurse
$C_{1}=\mathrm{foo}\left(\mathrm{A}_{1}\right)$
:
$C_{a}=\operatorname{foo}\left(A_{a}\right)$
return combine $\left(C_{1}, \ldots, C_{a}\right)$

- Base is constant time
- Divide and combine takes
$O\left(n^{d}\right)$

$$
f(n)=a f(n / b)+n^{d}
$$

$f(1)=c \leftarrow$ does not play a role, as we only care about O

Level i: a calls of $f\left(n / d^{\prime}\right)$

Stops when $n / b^{i}=1$ i.e. $i=\log _{b} n$

$\longrightarrow \quad\left(a / b^{d}\right)^{i} n^{d}$
$n^{d} \sum_{i=0}^{\log _{b} n}\left(a / b^{d}\right)^{i}$

Three Cases for $r=\left(a / b^{d}\right)$

Geometric series: $\sum_{i=0}^{k} r^{i}=\frac{r^{k+1}-1}{r-1}$ Here $\mathrm{r}=\left(\mathrm{a} / \mathrm{b}^{\mathrm{d}}\right)$

1. $r<1$ e.g. $r=\frac{1}{2} \quad 1+1 / 2+1 / 4+\ldots<2$ for any k
2. $\mathrm{r}=1 \quad \sum_{i=0}^{k} 1^{i}=\mathrm{k}+1=O(\mathrm{k})$
3. $r>1$ e.g. $r=2 \quad 1+2+4+2^{k}=2^{k+1}-1=O\left(2^{k}\right)$

The three cases in practice

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \quad / / \text { mergesort } \\
& r=1 \quad a=2, b=2, d=1 \quad r=a / b^{d}=1 \quad \begin{array}{l}
n^{1} \sum_{i=0}^{\log n} 1^{i}=n(\log n+1) \\
\\
\\
T(n)=O(n \log n)
\end{array}
\end{aligned}
$$

$$
T(n)=2 T(n / 2)+1 \quad / / \text { e.g. recursive max in array size } n:
$$

$$
\text { if } n=1 \text {, then the element is the max. }
$$

$r>1$ else divide array in 2 halves, find max of each and choose max of the two

$$
\begin{aligned}
& a=2, b=2, d=0 \quad r=a / b^{d}=2 n^{0} \sum_{i=0}^{\log n} 2^{i}=\left(2^{\log n)+1}-1\right) /(2-1)=(2 n-1) / 1 \\
& T(n)=O(n)
\end{aligned}
$$

$$
T(n)=2 T(n / 2)+n^{2}
$$

$$
\mathrm{r}<1 \mathrm{a}=2, \mathrm{~b}=2, \mathrm{~d}=2 \quad \mathrm{r}=-\mathrm{a} / \mathrm{b}^{\mathrm{d}}=1 / 2 \quad \mathrm{n}^{2} \sum_{i=0}^{\log n}\left(\frac{1}{2}\right)^{i}=n^{2}(1+1 / 2+1 / 4+\ldots)<2 n^{2}
$$

$$
T(n)=O\left(n^{2}\right)
$$

Draw trees for these and do the analysis, as in slides 9, 10,11

Towers of Hanoi

- Move all disks to third peg, without ever placing a larger disk on a smaller one.
- What's the recurrence relation? $a_{n}=2 a_{n-1}+1$ with the base case that $a_{1}=1$
- Let's solve by repeated substitution
- Plug in the definition
- Do the algebra to collect all the non-recursive expressions together
- Identify a pattern
- Determine how many times the pattern occurs until we hit the base case

Hanoi by repeated substitution

$$
\begin{aligned}
& T(n)=2 T(n-1)+1 \\
& \quad=2(2 T(n-2)+1)+1 \\
& \quad=4 T(n-2)+2+1 \\
& =4(2 T(n-3)+1)+2+1 \\
& \quad=8 T(n-3)+4+2+1
\end{aligned}
$$

What is the label and how is it changing?

- What about the other terms?
- When do we hit the base case?

Hanoi by repeated substitution

$$
\begin{aligned}
& T(n)=2 T(n-1)+1 \\
& =2(2 T(n-2)+1)+1 \\
& =4 T(n-2)+2+1 \\
& =4(2 T(n-3)+1)+2+1 \\
& =8 T(n-3)+4+2+1 \\
& \vdots \\
& =2^{i} T(n-i)+\sum_{j=0}^{i-1} 2^{j}
\end{aligned}
$$

- When does the label become 1 ?
- When $i=n-1$ So our solution is

Hanoi by repeated substitution

$$
\begin{aligned}
& T(n)=2^{n-1} T(1)+\sum_{j=0}^{n-2} 2^{j} \\
& =\sum_{j=0}^{n-1} 2^{j}=2^{n}-1=\Theta\left(2^{n}\right)
\end{aligned}
$$

- This is a geometric series
- The Master Theorem does not apply

