
CS 320 Fall 2023
Solving recurrences

for Divide & Conquer

Sanjay Rajopadhye
Colorado State University

Divide & Conquer

n Break up the problem into (multiple,
smaller) parts

n Solve each of the parts recursively

n Combine the solution of each of the parts
into a solution of the original problem

2

First example: Merge sort

n Divide the array into two halves
n Recursively sort each half
n Merge the two sorted halves
Analysis
Divide !(1)
Merge !(%)
What about the
recursive calls?

2 ' (
)

3

John von Neumann (1945)

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Complexity of merge

n Time: ! "

n Space: ! "

n Often with two arrays of length n

n Can you do (a constant factor) better?

4

Recurrence relations

n A recurrence relation for a sequence, {"#} is
and equation that expresses "# in terms of one
or more of the previous elements of the
sequence, "%, "', … "#)%

n A special kind of recursive function
n There may be base cases, and the equation

hold for * ≥ *, for some constant *,
n Example: "# = 2"#)% + 1 and "% = 1
n After setting up the recurrence relation, we solve

it

5

Recurrence relation for
Merge-sort

n Define the number of comparisons to sort an
input of length ! as: " !

n Use the structure of the D&C algorithm to
define an equation/relation for " !

" ! ≤ $
% if ! = 1

" *
+ + " *

+ + %! otherwise

6

Solving the Recurrence

! " = $
% if " = 1

2! "
2 + %" otherwise

n Solution (closed form):
! " = Θ(" log ")

n Number of techniques
n Unrolling the recurrence
n Repeated substitution
n See a pattern, guess (i.e., make a hypothesis),

and then, prove by induction

7

Unroll ! " = $
% if " = 1

2! *
+ + %" otherwise

8

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n

. . .

. . .
log2n

n log2n"/25 = 1 when 5 = lg"

Seeing the pattern

n What is the “label” of each node?
n When does the label become “small enough” (base

case)
n How many levels in the tree? [Hint: use the above

two]
n How many nodes at each level?
n What is the “contribution” of each node?
n What is the contribution of each level?
n How many leaves?
n Contribution of the leaves (different from

contribution of other levels)

9

Repeated substitution for ! " = $
% if " = 1

2! *
+ + %" otherwise

10

n Claim: ! " = %" log+ "

T (n) = 2T (n / 2) + cn
= 4T (n / 4) + cn+ 2cn / 2
= 8T (n / 8) + cn+ cn+ 4cn / 4
!
= 2log2 nT (1) + cn +!+ cn

log2 n
" #$$ %$$

= O(n log2 n)

This reaches !(1) when
" = 2lg "

by definition of lg "

Binary search

n What is the recurrence?

n Apply repeated substitution (on doc cam or
exercise)

11

function BS(x, start, end)
if (end <= start)

return A[start]
mid = (end + start)/2
if A[mid] < x

return BS(x, mid, end)
return BS(x, start, mid-1)

Find max in an unsorted array

Algorithm:
n Base case n=1
n Otherwise: find the max of the two halves,

and return the max of that

12

function FM(start, end)
if (end = start)

return A[start]
mid = (end + start)/2
return max(FM(start, mid-1), FM(mid, end))

Find max in an unsorted array
Recurrence: base case: !(1) = 0
Otherwise: ! ' = 2!)

* + 1
= 4! '

4 + 2 + 1
= 8! '

8 + 4 + 2 + 1
⋮
= 2/! '

2/ + 2/01 + 2/0* + ⋯23

= 2/! '
2/ + 2 4 2/01 − 1

= 2/! '
2/ + 2/ − 1

Bae case is reached when 2/ = ', i.e., 6 = lg ', So
! ' = 0 + 29:) − 1 = ' − 1

13

14

function foo(A, B) // the size of A is n
if (n == 1):
return fuzz(A, B) // base case, fuzz is

constant time

// Process A to build two parts, A0 and A1 of
size n/2 each

C0 = foo (A0, B)
C1 = foo (A0, B)
return buzz(C0, C1) // buzz is O(n2)

Another example

15

function foo(parameters) // the size of A is n
if (n <= b): // base case

return fuzz(A, B) // constant time
// Divide input into a parts, each of size n/b

divide()
// Make a calls to

foo(new parameters) // size is n/b
return combine(r1, …, ra)

// Complexity of divide and combine is !(#$)

General Divide & Conquer

Master Theorem

n Let ! ≥ 1, % > 1, ' = %) and *(') be given by

* ' = !* -
. + 0'1

n The solution of the recurrence is

* ' =
2 '1 if ! < %1

2 '1 log ' if ! = %1
2 '9:;< = if ! > %1

16

Merge-sort by master theorem

n ! = 2, % = 2, & = 1

n So, ! = 2, and %(= 2

… and the solution is

) * = +(*(log *) = +(* log *)

17

18

Function foo(A) //size n
if (n <= b) return (base(A)

A1 … Aa = divide() // size n/b
// Recurse

C1 = foo(A1)
⋮
Ca = foo(Aa)

return combine(C1, …, Ca)

Divide & Conquer call tree

n Base is constant time
n Divide and combine takes
"($%)

f(n)

f1(n/b) fa(n/b)
…

f1,1(n) f1,a(n)
…

f1,a(n) Fa,a(n)
…

19

20

21

Towers of Hanoi

n Move all disks to third peg, without ever
placing a larger disk on a smaller one.

n What’s the recurrence relation? !" = 2!"%& + 1
with the base case that !& = 1

n Let’s solve by repeated substitution
n Plug in the definition
n Do the algebra to collect all the non-recursive

expressions together
n Identify a pattern
n Determine how many times the pattern occurs

until we hit the base case

22

Hanoi by repeated substitution

! " = 2! " − 1 + 1
= 2 2! " − 2 + 1 + 1
= 4! " − 2 + 2 + 1

= 4 2! " − 3 + 1 + 2 + 1
= 8! " − 3 + 4 + 2 + 1

n What is the label and how is it changing?

n What about the other terms?

n When do we hit the base case?

23

Hanoi by repeated substitution

! " = 2! " − 1 + 1

= 2 2! " − 2 + 1 + 1
= 4! " − 2 + 2 + 1

= 4 2! " − 3 + 1 + 2 + 1
= 8! " − 3 + 4 + 2 + 1

⋮

= 2,! " − - +.
/01

,23
2/

n When does the label become 1?
n When - = " − 1 So our solution is

24

Hanoi by repeated substitution

! " = 2%&'! 1 +*
+,-

%&.
2+

= *
+,-

%&'
2+ = 2% − 1 = Θ(2%)

n This is a geometric series

n The Master Theorem does not apply

25

