
Minimum Spanning Trees
Shortest Paths

Cormen et. al. VI 23,24

Given a set of locations, with positive distances to each other,
we want to create a sub-graph that connects all nodes to each
other with the minimum sum of distances.

Then that sub-graph is a tree, i.e., has no cycles.
WHY?

Minimum Spanning Tree

5

23

10
21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) SeÎT ce = 50

If there is a cycle, we can take one edge
out of the cycle and still connect all nodes.
(Repeat if there are more cycles.)

3

Applications

MST is fundamental problem with diverse applications.
qNetwork design.

vtelephone, electrical, hydraulic, TV cable, computer, road
qApproximation algorithms for NP-complete problems.

vTSP
qCluster analysis.

Minimal or Minimum Spanning Tree?

1. Minimum is a (singular) noun or adjective, minimal is an adjective

2. Minimum is unique, minimal is when we are not sure

3. Minimum implies that the amount is (relatively) small: Minimum Spanning
Tree.

4

Three Greedy Algorithms for MST

Kruskal's algorithm. Start with T = f. Consider edges
in ascending order of cost. Add edge e to T unless
doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E.
Consider edges in descending order of cost. Delete
edge e from T unless doing so would disconnect T.

Prim's algorithm. Start with some node s and
greedily grow a tree T from s. At each step, add the
cheapest edge e to T that has exactly one endpoint in
T, i.e., without creating a cycle.

5

The cut property

Simplifying assumption. All edge costs are distinct.
In this case the MST is unique. In general it is not.

Cut property. Let S be a subset of nodes, S neither
empty nor equal V, and let e be the minimum cost edge
with exactly one endpoint in S. This is called a light edge
of the cut.
Then the MST contains e. The cut property establishes
the correctness of MST algorithm.

S

e is in the MST

e

V-S

If multiple equal minimum
cost edges, just pick one

6

The cut property

Cut property. Let S be a subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST T contains e.
Proof. Exchange Argument.
If e =(v,w) is the only edge connecting S and V-S it must be in T.

Else, there is another edge e’= (v',w’) with ce’ > ce connecting S and
V-S. Assume e’ is in the MST, and not e. Adding e to the spanning
tree creates a cycle, then taking out e’ out removes the cycle
creating a new spanning tree with lower cost. Contradiction.

w’v’

v

w

e’

e

S
Remember CS220:
if we add an edge to a tree
we get a cycle,
if we take any edge out of that
cycle we get a tree again.

7

Prim's Algorithm

Prim's algorithm. [Jarník 1930, Prim 1957, Dijkstra 1959]
qInitialize S = any node.
qApply cut property to S: add min cost edge (v, w) where v is

in S and w is in V-S, and add w to S.
qRepeat until S = V, i.e., greedily growing the MST.

S

8

Prim’s algorithm: Implementation

Prim(G,s)
foreach (v Î V)

priority a[v] ¬ ¥
a[s]= 0
priority queue Q = {}
foreach (v Î V) insert v onto Q (key: a[v])
set S ¬ {}
while (Q is not empty) {

u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (ce < a[v]))
a[v] = ce // and maintain queue

qMaintain set of explored nodes S.
qFor each unexplored node v, maintain attachment cost a[v] = cost

of cheapest edge v to a node in S.

c

as

b

∞

3

7 1

2

1

b

s

1
c

2 a

3

7 1

2

1

s

b

c

1 a

3

7 1

2

1

s

b

c

a

3

7 1

2

1

∞

∞

0 s

3

b

7

∞

3

7 1

2

1

c

a

PQ: s:0 a:∞ b:∞ c:∞ PQ: b:3 c:7 a:∞

PQ: c:1 a:2

PQ: a:1

PQ:

Prim: DO IT, DO IT!

Let’s do the Prim again, starting at d

11

g ef

di

cba

h

4

8 7

9

10

7
4

2

11

8
7

1 2

6

g

d

f e

i

cb

h

a

{(d,c),(c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a) }

unique?

Kruskal’s algorithm [Kruskal, 1956]

Kruskal:
Consider edges in ascending order of weight. Add
edge unless doing so would create a cycle.

3

7 1

2

1

3

7 1

2

1

3

7 1

2

1

3

7 1

2

1

Cannot add
this edge

Let’s do Kruskal's algorithm

13

g ef

di

cba

h

4

8 7

9

10

7
4

2

11

8
7

1 2

6

d

unique?

Kruskal works

1 Spanning Tree: Kruskal keeps adding edges until all nodes
are connected, and does not create cycles, so produces a
spanning tree.
2. Minimum Spanning Tree: Consider e=(v, w) added by
Kruskal. S is the set of nodes connected to v just before e is
added; v is in S and w is not (otherwise we created a cycle).
Therefore e is the cheapest edge connecting S to a node in V-
S, and hence, e is in any MST (cut property).

w

v

e S

Reverse-Delete algorithm

Start with T = E. Consider edges in descending order
of cost. Delete edge e from T unless doing so would
disconnect T.

15

Is it always safe to remove e, i.e. could e be in an MST?

3

7 1

2

1

3

1
1

3

1

2

1

Cannot take
this edge out

Let’s do the Reverse Delete algorithm

16

g ef

di

cba

h

4

8 7

9

10

7
4

2

11

8
7

1 2

6

d

unique?

17

Safely removing edges

Cycle property. Let C be any cycle in G, and let e be
the max cost edge belonging to C. Then e doesn’t
belong to any MST of G.

v

w

S

v’ w’

e

e'

Let T be a spanning tree that
contains max edge e=(v,w). Remove
e; this will disconnect T, creating S
containing v, and V-S containing w.

C–{e} is a path P. Following P from v
will at some stage cross S into V-S
by edge e’ with lower cost
than e, so T - {e} + {e’} is again a
spanning tree and its cost is lower
than T, so T is not an MST.

Shortest Paths Problems
Given a weighted graph G=(V,E) find the shortest path
qpath length is the sum of its edge weights.

The shortest path from u to v is ¥ if there is no path from u to v.
Variations of the shortest path problem:

1) SSSP (Single source SP): find the SP from some node s to all nodes in
the graph.

2) SPSP (single pair SP): find the SP from some u to some v.
We can use 1) to solve 2), also there is no more efficient algorithm for
2) than that for 1).

3) SDSP (single destination SP) can use 1) by reversing its edges.

4) APSP (all pair SPs) could be solved by |V| applications of 1), but there
are other approaches (cs420).

Dijkstra SSSP
Dijkstra's (Greedy) SSSP algorithm only works for graphs with only
positive edge weights.

S is the set of explored nodes. For each u in S, d[u] is a distance.
Initialize: S = {s} the source, and d[s]=0, for all
other nodes v in V-S, d[v]= ¥
while S≠V:

select a node v in V-S with at least one edge
from S, for which d'[v]=mine=(u,v),u in Sd[u]+we
add v to S (S=S+v)
d[v]=d'[v]

To compute the actual minimum paths, maintain an array p[v]
of predecessors. When d[v] is set to d'[v], set p[v] to u.

Notice: Dijkstra is very similar to Primm, but where Dijkstra
minimizes path lengths, Prim minimizes edge lengths.

the minimum path length extending
with one edge out of S

What does d’ represent?

0s

∞

b

∞

c

∞ a

2

7 1

5

2

1

b

0s

2

7

c

∞ a

2

7 1

5

2

1

0s

2

b

3

c

7 a

2

7 1

5

2

1 0s

2

b

3

c

a

2

7 1

5

2

1 4

Let’s do Dijkstra, starting at d

21

e

d

c

h

a b

f

i

g

4

8 7

9

10

7
4

2

11

8
7

1 2

6

d

c

unique?
efg

b

ih

a

In this case yes, because all path lengths are different
But in general, multiple path lengths can be equal, and
thus can lead to different choices.

22

Does Dijkstra’s algorithm lead to a Minimum Spanning Tree?

Can you create a counter example?

Shortest paths from S?
Minimum Spanning Tree?

Formulate the difference between Prim and Dijkstra

s
b

C

4

2

3

Dijkstra works

For each u in S, the path Ps,u is the shortest (s,u) path

Proof: by induction on the size of S

Base: |S| = 1 d[s]=0 OK

Step: Suppose it holds for |S|=k>=1, then grow S by 1 adding node
v using edge (u,v) (u already in S) to create the next S.

Then path Ps,u,v is path Ps,u+(u,v), and is the shortest path to v

WHY? What are the "ingredients" of an exchange argument?
What are the inequalities?

Greedy exchange argument

Assume there is another path P from s to v. P leaves s with edge
(x,y). Then the path P goes from s to x to y to v.
What can you say about P: s à* x à y compared to Ps,u,v? How
does the algorithm pick Ps,u,v? Why does it not work for
negative edges?

s

x

u

y

v
set S

next S

P from s to y is at least as long as
Ps,u,v because the algorithm picks the
shortest extension out of S.

Hence the path
P: s à* x à y à* v is at least as long

as
Ps,u,v: s à* u à v

This would not work if w(y,v) <0
Corner case?

sàxày = sàuàv AND y = v

