
Minimum Spanning Trees
Shortest Paths

Cormen et. al. VI 23,24



Given a set of locations, with positive distances to each other, 
we want to create a sub-graph that connects all nodes to each 
other with the minimum sum of distances.

Then that sub-graph is a tree, i.e., has no cycles.
WHY? 

Minimum Spanning Tree
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G = (V, E) SeÎT ce = 50

If there is a cycle, we can take one edge 
out of the cycle and still connect all nodes.
(Repeat if there are more cycles.)
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Applications

MST is fundamental problem with diverse applications.
qNetwork design.

vtelephone, electrical, hydraulic, TV cable, computer, road
qApproximation algorithms for NP-complete problems.

vTSP
qCluster analysis.

Minimal or Minimum Spanning Tree?

1. Minimum is a (singular) noun or adjective, minimal is an adjective

2. Minimum is unique, minimal is when we are not sure

3. Minimum implies that the amount is (relatively) small: Minimum Spanning 
Tree.



4

Three Greedy Algorithms for MST

Kruskal's algorithm.  Start with T = f. Consider edges 
in ascending order of cost. Add edge e to T unless 
doing so would create a cycle.

Reverse-Delete algorithm.  Start with T = E.  
Consider edges in descending order of cost. Delete 
edge e from T unless doing so would disconnect T.

Prim's algorithm.  Start with some node s and 
greedily grow a tree T from s.  At each step, add the 
cheapest edge e to T that has exactly one endpoint in 
T, i.e., without creating a cycle.
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The cut property

Simplifying assumption.  All edge costs are distinct.  
In this case the MST is unique.  In general it is not.

Cut property.  Let S be a subset of nodes, S neither 
empty nor equal V, and let e be the minimum cost edge 
with exactly one endpoint in S. This is called a light edge 
of the cut.
Then the MST contains e. The cut property establishes 
the correctness of MST algorithm.

S

e is in the MST

e

V-S

If multiple equal minimum 
cost edges, just pick one 



6

The cut property

Cut property.  Let S be a subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S. Then the MST T contains e.
Proof. Exchange Argument.
If e =(v,w) is the only edge connecting S and V-S it must be in T. 

Else, there is another edge e’= (v',w’) with ce’ > ce connecting S and 
V-S. Assume e’ is in the MST, and not e. Adding e to the spanning 
tree creates a cycle, then taking out e’ out removes the cycle 
creating a new spanning tree with lower cost. Contradiction.

w’v’

v

w

e’ 

e

S
Remember CS220:
if we add an edge to a tree
we get a cycle, 
if we take any edge out of that 
cycle  we get a tree again.  
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Prim's Algorithm

Prim's algorithm.  [Jarník 1930, Prim 1957, Dijkstra 1959]
qInitialize S = any node.
qApply cut property to S: add min cost edge (v, w) where v is 

in S and w is in V-S, and add w to S.
qRepeat until S = V, i.e., greedily growing the MST.

S
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Prim’s algorithm:  Implementation

Prim(G,s)
foreach (v Î V) 

priority a[v] ¬ ¥
a[s]= 0
priority queue Q = {}
foreach (v Î V) insert v onto Q (key: a[v] )
set S ¬ {}
while (Q is not empty) {

u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (ce < a[v]))
a[v] = ce // and maintain queue

qMaintain set of explored nodes S.
qFor each unexplored node v, maintain attachment cost a[v] = cost 

of cheapest edge v to a node in S.
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Prim:  DO IT, DO  IT!



Let’s do the Prim again, starting at d
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{(d,c),(c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a) }

unique?



Kruskal’s algorithm [Kruskal, 1956]

Kruskal:  
Consider edges in ascending order of weight. Add 
edge unless doing so would create a cycle.
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Let’s do Kruskal's algorithm
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Kruskal works

1 Spanning Tree: Kruskal keeps adding edges until all nodes 
are connected, and does not create cycles, so produces a 
spanning tree.
2. Minimum Spanning Tree: Consider e=(v, w) added by 
Kruskal. S is the set of nodes connected to v just before e is 
added; v is in S and w is not (otherwise we created a cycle). 
Therefore e is the cheapest edge connecting S to a node in V-
S, and hence, e is in any MST (cut property).

w

v

e S



Reverse-Delete algorithm

Start with T = E.  Consider edges in descending order 
of cost. Delete edge e from T unless doing so would 
disconnect T. 
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Is it always safe to remove e, i.e. could e be in an MST?
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Let’s do the Reverse Delete algorithm
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Safely removing edges

Cycle property.  Let C be any cycle in G, and let e be 
the max cost edge belonging to C. Then e doesn’t 
belong to any MST of G.

v

w

S

v’ w’

e

e'

Let T be a spanning tree that 
contains max edge e=(v,w). Remove 
e; this will disconnect T, creating S 
containing v, and V-S containing w. 

C–{e} is a path P. Following P from v 
will at some stage cross S into V-S 
by edge e’  with lower cost
than e, so T - {e} + {e’} is again a 
spanning tree and its cost is lower 
than T, so T is not an MST.



Shortest Paths Problems
Given a weighted graph G=(V,E) find the shortest path 
qpath length is the sum of its edge weights. 

The shortest path from u to v is ¥ if there is no path from u to v. 
Variations of the shortest path problem:

1) SSSP (Single source SP): find the SP from some node s to all nodes in 
the graph.

2) SPSP (single pair SP): find the SP from some u to some v. 
We can use 1) to solve 2), also there is no more efficient algorithm for 
2) than that for 1).

3) SDSP (single destination SP) can use 1) by reversing its edges.

4) APSP (all pair SPs) could be solved by |V| applications of 1), but there 
are other approaches (cs420). 



Dijkstra SSSP
Dijkstra's (Greedy) SSSP algorithm only works for graphs with only 
positive edge weights. 

S is the set of explored nodes. For each u in S, d[u] is a  distance. 
Initialize: S = {s} the source, and d[s]=0, for all    
other nodes v in V-S, d[v]= ¥
while S≠V:

select a node v in V-S with at least one edge 
from S, for which d'[v]=mine=(u,v),u in Sd[u]+we  
add v to S  (S=S+v)
d[v]=d'[v]

To compute the actual minimum paths, maintain an array p[v]    
of predecessors. When d[v] is set to d'[v], set p[v] to u.

Notice: Dijkstra is very similar to Primm, but where Dijkstra 
minimizes path lengths, Prim minimizes edge lengths.

the minimum path length extending 
with one edge out of S

What does d’ represent?
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Let’s do Dijkstra, starting at d
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In this case yes, because all path lengths are different
But in general, multiple path lengths can be equal, and
thus  can lead to different choices.
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Does Dijkstra’s algorithm lead to a Minimum Spanning Tree? 

Can you create a counter example?

Shortest paths from S?
Minimum Spanning Tree?

Formulate the difference between Prim and Dijkstra

s
b

C

4

2

3



Dijkstra works

For each u in S, the path Ps,u is the shortest (s,u) path

Proof: by induction on the size of S

Base: |S| = 1  d[s]=0  OK

Step: Suppose it holds for |S|=k>=1, then grow S  by 1 adding node 
v using edge (u,v) (u already in  S) to create the next S. 

Then path Ps,u,v is path Ps,u+(u,v), and is the shortest path to v

WHY?  What are the "ingredients" of an exchange argument?
What are the inequalities? 



Greedy exchange argument

Assume there is another path P from s to v.  P leaves  s with edge 
(x,y).  Then the path P goes from s to x to y to v.
What can you say about  P: s à* x à y compared to Ps,u,v? How
does the algorithm pick Ps,u,v? Why does it not work for
negative edges?

s

x

u

y

v
set S

next S

P from s to y is at least as  long as 
Ps,u,v because the algorithm  picks the 
shortest extension out  of S. 

Hence the path 
P: s à* x à y à* v is at least as long

as
Ps,u,v:  s à* u à v

This would not work if w(y,v) <0
Corner case?

sàxày =  sàuàv AND y = v


