
Greedy Algorithms

CLRS, Chapter 16.1-16.3

1

2

Selecting gas stations

qRoad trip from Fort Collins to New York on a given
route with length L, and fuel stations at positions bi.

qFuel capacity = C miles.
qGoal: make as few refueling stops as possible.

Fort Collins New York

3

Selecting gas stations

qRoad trip from Fort Collins to New York on a given
route with length L, and fuel stations at positions bi.

qFuel capacity = C.
qGoal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.
In general: determine a global optimum via a number of
locally optimal choices.

Fort Collins New York

C

C

C

C

C

C

C

4

The road trip algorithm.

Selecting gas stations: Greedy Algorithm

Sort stations so that: 0 = b0 < b1 < b2 < ... < bn = L

S ¬ {0}
x ¬ 0

while (x ¹ bn)
let p be largest integer such that bp £ x + C
if (bp = x)

return "no solution"
x ¬ bp
S ¬ S È {p}

return S

stations selected, we fuel up at home
current distance

5

q Let b1, b2 … bm be our solution
q Let r1, r2 … rn be your solution

q if n > m I win, no contest, so n ≤ m
q Can it be that n=0 and 1 ≤ m?

q Justify
q Now by induction:

q What happens if we replace your first stop by
mine: replace r1 by b1

Proof of optimality

6

Interval Scheduling

qAlso called activity selection, or job scheduling...
qJob j starts at sj and finishes at fj.
qTwo jobs compatible if they don't overlap.
qGoal: find maximum size subset of compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

7

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones
already taken. Possible orders:

q[Earliest start time] Consider jobs in ascending order of sj.

q[Earliest finish time] Consider jobs in ascending order of fj.

q[Shortest interval] Consider jobs in ascending order of fj – sj.

q[Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.

Which of these surely don't work?
(hint: find a counter example)

8

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones
already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

9

Greedy algorithm. Consider jobs in increasing order of finish
time. Take each job provided it's compatible with the ones
already taken.

Implementation.
qWhen is job j compatible with A?

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

A ¬ f
for j = 1 to n {

if (job j compatible with A)
A ¬ A È {j}

}
return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

10

Greedy algorithm. Consider jobs in increasing order of finish
time. Take each job provided it's compatible with the ones
already taken.

Implementation. O(n log n).

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
A ¬{1}
j=1
for i = 2 to n {

if Si>=Fj
A ¬ A È {i}
j ¬ i

}
return A

Interval Scheduling: Greedy Algorithm

Example

i 1 2 3 4 5 6 7 8 9 10 11

Si 1 3 0 5 3 5 6 8 8 2 12
Fi 4 5 6 7 8 9 10 11 12 13 14

Eg

i 1 2 3 4 5 6 7 8 9 10 11

Si 1 3 0 5 3 5 6 8 8 2 12
Fi 4 5 6 7 8 9 10 11 12 13 14

A = {1,4,8,11}

Greedy algorithms determine a globally optimum
solution by a series of locally optimal choices.
Greedy solution is not the only optimal one:

A' = {2,4,9,11}

Greedy works for Activity Selection = Interval Scheduling

Proof by induction

BASE: There is an optimal solution that contains greedy
activity 1 as first activity. Let A be an optimal solution with
activity k != 1 as first activity.
Then we can replace activity k (which has Fk ≥ F1) by activity 1
So, picking the first element in a greedy fashion works.

STEP: After the first choice is made, remove all activities
that are incompatible with the first chosen activity and
recursively define a new problem consisting of the remaining
activities. The first activity for this reduced problem can be
made in a greedy fashion by the base principle.

By induction, Greedy is optimal.

What did we do?

We assumed there was another, non greedy,
optimal solution, then we stepwise morphed
this solution into a greedy optimal solution,
thereby showing that the greedy solution
works in the first place.

This is called the exchange argument:

Assume there is another optimal
solution, then I show my greedy
solution is at least as good.
Therefore, there is no better
solution than the greedy solution

Scheduling all intervals

qLecture j starts at sj and finishes at fj.
qGoal: find minimum number of classrooms to schedule

all lectures so that no two occur at the same time in the
same room.

This schedule uses 4 classrooms to schedule 10 lectures:

Can we do better?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

16

Scheduling all intervals

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

qEg, lecture j starts at sj and finishes at fj.
qGoal: find minimum number of classrooms to

schedule all lectures so that no two occur at the same
time in the same room.

This schedule uses 3:

Can we do better?

17

Interval Scheduling: Lower Bound

Key observation. Number of classrooms needed ³
depth (maximum number of intervals at a time point)

Example: Depth of schedule below = 3 Þ schedule
is optimal. We cannot do it with 2.

Q. Does there always exist a schedule equal to depth
of intervals?

(hint: greedily label the intervals with their resource)

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

18

Interval Scheduling: Greedy Algorithm

Greedy algorithm.

allocate d labels(d = depth)
sort the intervals by starting time: I1,I2,..,In

for j = 1 to n
for each interval Ii that precedes and

overlaps with Ij exclude its label for Ij
pick a remaining label for Ij

Greedy works

Observations:

v There is always a label for Ij
assume t intervals overlap with Ij ; Ij and these pass over a
common point, so t < d, so there is one of the d labels
available for Ij

v No overlapping intervals get the same label
by the nature of the algorithm

allocate d labels (d = depth)
sort the intervals by starting time: I1,I2,..,In

for j = 1 to n
for each interval Ii that precedes and

overlaps with Ij exclude its label for Ij
pick a remaining label for Ij

Huffman Code Compression

Huffman codes

Say I have a code consisting of the letters
a, b, c, d, e, f with frequencies (x1000)

45, 13, 12, 16, 9, 5
What would a fixed length binary encoding look like?

a b c d e f
000 001 010 011 100 101

What would the total encoding length be?

100,000 * 3 = 300,000

Fixed vs. Variable encoding

a b c d e f
frequency(x1000) 45 13 12 16 9 5
fixed encoding 000 001 010 011 100 101
variable encoding 0 101 100 111 1101 1100

100,000 characters
Fixed: 300,000 bits
Variable?

(1*45 + 3*13 + 3*12 + 3*16 + 4*9 + 4*5)*1000 =
224,000 bits

> 25% saving

Variable prefix encoding

a b c d e f
frequency(x1000) 45 13 12 16 9 5
fixed encoding 000 001 010 011 100 101
variable encoding 0 101 100 111 1101 1100

what is special about our encoding?

no code is a prefix of another.
why does it matter?

We can concatenate the codes without ambiguities

001011101 = aabe

Prefix tree

a : 45 ____
b : 13 0/ \1
c : 12 / \
d : 16 a:45 ____
e : 9 / \
f : 5 0/ \1

__ __
0/ \1 0/ \1
c:12 b:13 __ d:16

/ \
0/ \1
f:5 e:9

Two characters, frequencies, encodings
• Say we have two characters a and b,

a with frequency fa and b with frequency fb
e.g. a has frequency 70, b has frequency 30

• Say we have two encodings for these,
one with length l1 one with length l2
e.g. ‘101’, l1=3, ‘11100’, l2=5

Which encoding would we chose for a and which for b ?

if we assign a =‘101’ and b=11100’
what will the total number of bits be?

if we assign a =‘11100’ and b=101’
what will the total number of bits be?

Can you relate the difference to frequency and encoding length?

25

70*3+30*5= 360

70*5+30*3= 440

(5-3)(70-30)= 80

Frequency and encoding length

Two characters, a and b, with frequencies f1 and f2,
two encodings 1 and 2 with length l1 and l2

f1 > f2 and l1 > l2

I: a encoding 1, b encoding 2: f1*l1 + f2*l2
II: a encoding 2, b encoding 1: f1*l2 + f2*l1

Difference: (f1*l1 + f2*l2) - (f1*l2 + f2*l1) =
f1*(l1-l2) + f2*(l2-l1) = f1*(l1-l2) - f2*(l1-l2) =
(f1-f2)*(l1-l2)

So, for optimal encoding:
the higher the frequency, the shorter the encoding length

26

Cost of encoding a file: ABL

For each character c in C, f(c) is its frequency
and d(c) is the number of bits it takes to encode c.

So the number of bits to encode the file is

The Average Bit Length of an encoding E:

ABL(E) =

where n is the number of characters in the file

€

f (c)d(c)
c in C
∑

€

1
n

f (c)d(c)
c in C
∑

Huffman code

An optimal encoding of a file has a minimal cost
qi.e., minimal ABL.

Huffman invented a greedy algorithm to construct an
optimal prefix code called the Huffman code.

An encoding is represented by a binary prefix tree:
intermediate nodes contain frequencies

the sum frequencies of their children
leaves are the characters + their frequencies
paths to the leaves are the codes

the length of the encoding of a character c is the
length of the path to c:fc

Prefix tree for variable encoding

a : 45, 0 100
b : 13, 101 0/ \1
c : 12, 100 / \
d : 16, 111 a:45 55
e : 9,1101 / \
f : 5,1100 0/ \1

25 30
0/ \1 0/ \1
c:12 b:13 14 d:16

/ \
0/ \1
f:5 e:9

Optimal prefix trees are full

§ The frequencies of the internal nodes are the sums
of the frequencies of their children.

§ A binary tree is full if all its internal nodes have
two children.

§ If the prefix tree is not full, it is not optimal.
Why?

30

If a tree is not full it has an internal node with one
child labeled with a redundant bit.

Check the fixed encoding:
a:000 b:001 c:010 d:011 e:100 f:101

a: 000 100
b: 001 0/ \1
c: 010 / \
d: 011 86 14
e: 100 0/ \1 | 0 redundant
f: 101 / \ |

58 28 14
0/ \1 0/ \1 0/ \1
/ \ / \ / \

a:45 b:13 c:12 d:16 e:9 f:5

Huffman algorithm

• Create |C| leaves, one for each character

• Perform |C|-1 merge operations, each creating a
new node, with children the nodes with least two
frequencies and with frequency the sum of these two
frequencies.

• By using a heap for the collection of intermediate
trees this algorithm takes O(n lgn) time.

buildheap
do |C|-1 times

t1 = extract-min
t2 = extract-min
t3 = merge(t1,t2)
insert(t3)

1) f:5 e:9 c:12 b:13 d:16 a:45

2) c:12 b:13 14 d:16 a:45
/ \

f e

3) 14 d:16 25 a:45
/ \ / \
f e c b

4) 25 30 a:45
/ \ / \
c b 14 d

/ \
f e

5) a:45 55
/ \

25 30
/ \ / \
c b 14 d

/ \
f e

6) 100
/ \
a 55

/ \
25 30
/ \ / \

c b 14 d
/ \

f e

Huffman is optimal

Base step of inductive approach:

Let x and y be the two characters with the minimal
frequencies, then there is a minimal cost encoding
tree with x and y of equal and highest depth (see e
and f in our example above).
How?

The proof technique is the same exchange
argument have we have used before:

If the greedy choice is not taken then we
show that by taking the greedy choice we get
a solution that is as good or better.

Exchange argument

Let leaves x,y have the lowest frequencies. T
Assume that two other characters a and b / \
with higher frequencies are siblings at the O x
lowest level of the tree T / \

y O
/ \

a b
Since the frequencies of x and y are lowest,
the cost can only improve if we swap y and a, T
and x and b: / \
why? O b

/ \
a O

/ \
y x

Proof of exchange argument
T T

/ \ / \
O x O b

/ \ / \
y O a O

/ \ / \
a b y x

Since the frequencies of x and y are lowest, the cost can only
improve if we swap y and a, and x and b. We prove, using the
same subtract argument we used in slide 24 (frequency and
encoding length): cost left tree > cost right tree

(a,y part of) cost of left tree: d1fy+d2fa , of right tree: d1fa+d2fy
d1fy+d2fa - d1fa-d2fy = d1(fy-fa) +d2(fa-fy) = (d2-d1)(fa-fy) > 0

same for x and b

Greedy Huffman

We have shown that putting the lowest two
frequency characters lowest in the tree is a good
greedy starting point for our algorithm.

Now we create an alphabet C' = C with x and y
replaced by a new character z with frequency
f(z)=f(x)+f(y) and repeat the process.

38

Conclusion: Greedy Algorithms

At every step, Greedy makes the locally optimal choice,
"without worrying about the future".

Greedy stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as good as any
other.

Show Greedy works by exchange / morphing argument.
Incrementally transform any optimal solution to the
greedy one without worsening its quality.

Not all problems have a greedy solution.
None of the NP problems (eg TSP) allow a greedy
optimal solution.

