Greedy Algorithms

CLRS, Chapter 16.1-16.3

Selecting gas stations

\square Road trip from Fort Collins to New York on a given route with length L, and fuel stations at positions b_{i}.
\square Fuel capacity = C miles.
\square Goal: make as few refueling stops as possible.

Selecting gas stations

\square Road trip from Fort Collins to New York on a given route with length L, and fuel stations at positions b_{i}.
\square Fuel capacity $=C$.
\square Goal: makes as few refueling stops as possible.
Greedy algorithm. Go as far as you can before refueling. In general: determine a global optimum via a number of locally optimal choices.

Selecting gas stations: Greedy Algorithm

The road trip algorithm.

```
Sort stations so that: 0 = b b < b b < b b < ... < bnn= L
S}\leftarrow{0} - stations selected, we fuel up at hom
x}\leftarrow0 - current distanc
while (x = b bn)
    let p be largest integer such that bp
    if ( }\mp@subsup{b}{p}{}=x\mathrm{ )
        return "no solution"
    x}\leftarrow\mp@subsup{\textrm{b}}{\textrm{p}}{
    S}\leftarrowS\cup{p
return S
```


Proof of optimality

- Let $b_{1}, b_{2} \ldots b_{m}$ be our solution
- Let $r_{1}, r_{2} \ldots r_{n}$ be your solution \square if $n>m$ I win, no contest, so $n \leq m$
- Can it be that $n=0$ and $1 \leq m$?
\square Justify
- Now by induction:
\square What happens if we replace your first stop by mine: replace r_{1} by b_{1}

Interval Scheduling

\square Also called activity selection, or job scheduling...
\square Job j starts at s_{j} and finishes at f_{j}.
\square Two jobs compatible if they don' \dagger overlap.
\square Goal: find maximum size subset of compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken. Possible orders:
\square [Earliest start time] Consider jobs in ascending order of s_{j}.
\square [Earliest finish time] Consider jobs in ascending order of f_{j}.
\square [Shortest interval] Consider jobs in ascending order of $f_{j}-s_{j}$.
\square [Fewest conflicts] For each job j, count the number of conflicting jobs c_{j}. Schedule in ascending order of c_{j}.

Which of these surely don't work?
(hint: find a counter example)

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that }\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
    set of jobs selected
A}\leftarrow
for j = 1 to n {
    if (job j compatible with A)
    A}\leftarrowA\cup{\mp@code{j}
}
return A
```

Implementation.
\square When is job j compatible with A?

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
A \leftarrow{1}
j=1
for i=2 to n {
    if S;
    A}\leftarrowA\mp@code{A}\cup{i
    j \leftarrow i
}
return A
```

Implementation. $O(n \log n)$.

Example

$\begin{array}{llllllllllll}\text { i } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
$\begin{array}{rrrrrrrrrrrr}\mathrm{S}_{\mathrm{i}} & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\ \mathrm{~F}_{\mathrm{i}} & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

$$
\begin{array}{llllllllllll}
\mathrm{i} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{~S}_{i} & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\
\mathrm{~F}_{\mathrm{i}} & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\mathrm{~A} & =\{1,4,8,11\} & & & & & & &
\end{array}
$$

Greedy algorithms determine a globally optimum solution by a series of locally optimal choices. Greedy solution is not the only optimal one:
$A^{\prime}=\{2,4,9,11\}$

Greedy works for Activity Selection = Interval Scheduling

Proof by induction
BASE: There is an optimal solution that contains greedy activity 1 as first activity. Let A be an optimal solution with activity $\mathrm{k}!=1$ as first activity. Then we can replace activity k (which has $F_{k} \geq F_{1}$) by activity 1 So, picking the first element in a greedy fashion works.

STEP: After the first choice is made, remove all activities that are incompatible with the first chosen activity and recursively define a new problem consisting of the remaining activities. The first activity for this reduced problem can be made in a greedy fashion by the base principle.

By induction, Greedy is optimal.

What did we do?

We assumed there was another, non greedy, optimal solution, then we stepwise morphed this solution into a greedy optimal solution, thereby showing that the greedy solution works in the first place.

This is called the exchange argument:
Assume there is another optimal solution, then I show my greedy solution is at least as good. Therefore, there is no better solution than the greedy solution

Scheduling all intervals

LLecture j starts at s_{j} and finishes at f_{j}.
\square Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
This schedule uses 4 classrooms to schedule 10 lectures:

Can we do better?

Scheduling all intervals

\square Eg, lecture j starts at s_{j} and finishes at f_{j}.
\square Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

This schedule uses 3 :
Can we do better?

Interval Scheduling: Lower Bound

Key observation. Number of classrooms needed \geq depth (maximum number of intervals at a time point)

Example: Depth of schedule below $=3 \Rightarrow$ schedule is optimal. We cannot do it with 2.
Q. Does there always exist a schedule equal to depth of intervals?
(hint: greedily label the intervals with their resource)

Interval Scheduling: Greedy Algorithm

Greedy algorithm.

```
allocate d labels(d = depth)
sort the intervals by starting time: I I, I_ , ., In
    for j = 1 to n
        for each interval I i that precedes and
        overlaps with Ij exclude its label for Ij
    pick a remaining label for I I
```


Greedy works

```
allocate d labels (d = depth)
sort the intervals by starting time: I_, I, I2,\ldots, In
    for j = 1 to n
        for each interval I I that precedes and
        overlaps with Ij exclude its label for Ij
        pick a remaining label for Ij
```

Observations:

* There is always a label for I_{j} assume t intervals overlap with $I_{j} ; I_{j}$ and these pass over a common point, so $t<d$, so there is one of the labels available for I_{j}
* No overlapping intervals get the same label by the nature of the algorithm

Huffman Code Compression

Huffman codes

Say I have a code consisting of the letters a, b, c, d, e, f with frequencies ($\times 1000$)
$45,13,12,16,9,5$
What would a fixed length binary encoding look like?

$$
\begin{array}{cccccc}
a & b & c & d & e & f \\
000 & 001 & 010 & 011 & 100 & 101
\end{array}
$$

What would the total encoding length be?

$$
100,000 \text { * } 3=300,000
$$

Fixed vs. Variable encoding

		b	c	d	e	f
frequency $(\times 1000)$	45	13	12	16	9	5
fixed encoding	000	001	010	011	100	101
variable encoding	0	101	100	111	1101	1100

100,000 characters
Fixed: 300,000 bits

Variable?

$\left(1 \star 45+3^{\star} 13+3^{\star} 12+3^{\star} 16+4^{\star} 9+4^{\star} 5\right)^{\star} 1000=$ 224,000 bits
> 25% saving

Variable prefix encoding

		b	c	d	e	f
frequency $(\times 1000)$	45	13	12	16	9	5
fixed encoding	000	001	010	011	100	101
variable encoding	0	101	100	111	1101	1100

what is special about our encoding?
no code is a prefix of another.
why does it matter?
We can concatenate the codes without ambiguities
$001011101=$ aabe

Prefix tree

Two characters, frequencies, encodings

- Say we have two characters a and b,
a with frequency f_{a} and b with frequency f_{b}
e.g. a has frequency 70, b has frequency 30
- Say we have two encodings for these, one with length I_{1} one with length I_{2} e.g. '101', $I_{1}=3, \quad ' 11100 ', I_{2}=5$

Which encoding would we chose for a and which for b ?
if we assign $a=' 101^{\prime}$ and $b=11100 '$ what will the total number of bits be? $70 * 3+30 * 5=360$
if we assign $a=11100^{\prime}$ and $b=101^{\prime}$ what will the total number of bits be? $70 * 5+30 * 3=440$

Can you relate the difference to frequency and encoding length? $(5-3)(70-30)=80$

Frequency and encoding length

Two characters, a and b, with frequencies $f 1$ and $f 2$, two encodings 1 and 2 with length I1 and I2
$f 1>f 2$ and $11>12$
I: a encoding 1, b encoding 2: $f 1 * 11+f 2 * \mid 2$
II: a encoding $2, b$ encoding 1: $f 1 \star \mid 2+f 2 \star 11$
Difference:

$$
\begin{aligned}
& \left(f 1^{\star}\left|1+f 2^{\star}\right| 2\right)-\left(f 1^{\star}\left|2+f 2^{\star}\right| 1\right)= \\
& f 1^{\star}(11-\mid 2)+f 2^{\star}(\mid 2-11)=f 1^{*}(11-\mid 2)-f 2^{*}(11-\mid 2)= \\
& (f 1-f 2)^{\star}(11-\mid 2)
\end{aligned}
$$

So, for optimal encoding:
the higher the frequency, the shorter the encoding length

Cost of encoding a file: ABL

For each character c in $C, f(c)$ is its frequency and $d(c)$ is the number of bits it takes to encode c. So the number of bits to encode the file is

$$
\sum_{c} f_{C}(c) d(c)
$$

The Average Bit Length of an encoding E :

$$
A B L(E)=\frac{1}{n} \sum_{c} f_{c} f(c) d(c)
$$

where n is the number of characters in the file

Huffman code

An optimal encoding of a file has a minimal cost Di.e., minimal ABL.

Huffman invented a greedy algorithm to construct an optimal prefix code called the Huffman code.

An encoding is represented by a binary prefix tree: intermediate nodes contain frequencies the sum frequencies of their children leaves are the characters + their frequencies paths to the leaves are the codes
the length of the encoding of a character c is the length of the path to $c: f_{c}$

Prefix tree for variable encoding

Optimal prefix trees are full

- The frequencies of the internal nodes are the sums of the frequencies of their children.
. A binary tree is full if all its internal nodes have two children.
- If the prefix tree is not full, it is not optimal. Why?
If a tree is not full it has an internal node with one child labeled with a redundant bit.

Check the fixed encoding: a:000 b:001 c:010 d:011 e:100 f:101

Huffman algorithm

-Create $|C|$ leaves, one for each character

- Perform $|C|-1$ merge operations, each creating a new node, with children the nodes with least two frequencies and with frequency the sum of these two frequencies.
- By using a heap for the collection of intermediate trees this algorithm takes $O(n \lg n)$ time.

```
buildheap
do |C|-1 times
    t1 = extract-min
    \dagger2 = extract-min
    \dagger3 = merge( }+1,+2
    insert(t3)
```

1) f:5 e:9 c:12 b:13 d:16 a:45 5) a:45 55 2) $c: 12 b: 13 \quad 14$ d:16 a:45

2) $\begin{array}{ll}100 \\ & \neq \\ a & 55\end{array}$
3) $\begin{array}{llll}25 & & 30 & a: 45 \\ / & \backslash & / & \\ c & b & 14 & d \\ & & / & l \\ & & & \\ & & f & e\end{array}$

Huffman is optimal

Base step of inductive approach:
Let x and y be the two characters with the minimal frequencies, then there is a minimal cost encoding tree with x and y of equal and highest depth (see e and f in our example above).
How?
The proof technique is the same exchange argument have we have used before:

If the greedy choice is not taken then we show that by taking the greedy choice we get a solution that is as good or better.

Exchange argument

Let leaves x, y have the lowest frequencies. Assume that two other characters a and b with higher frequencies are siblings at the lowest level of the tree T

Since the frequencies of x and y are lowest, the cost can only improve if we swap y and a, and x and b :
why?

Proof of exchange argument

Since the frequencies of x and y are lowest, the cost can only improve if we swap y and a, and x and b. We prove, using the same subtract argument we used in slide 24 (frequency and encoding length): cost left tree > cost right tree
(a,y part of) cost of left tree: $d_{1} f_{y}+d_{2} f_{a}$, of right tree: $d_{1} f_{a}+d_{2} f_{y}$ $d_{1} f_{y}+d_{2} f_{a}-d_{1} f_{a}-d_{2} f_{y}=d_{1}\left(f_{y}-f_{a}\right)+d_{2}\left(f_{a}-f_{y}\right)=\left(d_{2}-d_{1}\right)\left(f_{a}-f_{y}\right)>0$
same for x and b

Greedy Huffman

We have shown that putting the lowest two frequency characters lowest in the tree is a good greedy starting point for our algorithm.

Now we create an alphabet $C^{\prime}=C$ with x and y replaced by a new character z with frequency $f(z)=f(x)+f(y)$ and repeat the process.

Conclusion: Greedy Algorithms

At every step, Greedy makes the locally optimal choice, "without worrying about the future".

Greedy stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other.

Show Greedy works by exchange / morphing argument. Incrementally transform any optimal solution to the greedy one without worsening its quality.

Not all problems have a greedy solution. None of the NP problems (eg TSP) allow a greedy optimal solution.

