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Topics (CLRS Ch 22, pp 589-623)

q Representation

qBreadth First Search/Depth First Search

qConnected components

qCycles

qBipartite graphs (testing)

q(Strongly) connected components

qTopological Sort
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Undirected Graphs G = (V, E)

n V = set of nodes.
n E = set of edges between pairs of nodes.
n Captures pairwise relationship between objects.
n Graph size parameters:  n = |V|, m = |E|.

n What is the maximum possible value for |E|?

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

n = 8

m = 11
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Directed Graphs

n Directed graph.  G = (V, E)
n Edge (u, v) goes from node u to node v.
n Maximum number?

n Example.  Web graph - hyperlink points from one web page 
to another.
n Modern web search engines exploit hyperlink structure to 

rank web pages by importance.



Graph definitions

n Graph G = (V, E), V: set of nodes or vertices, 
n E: set of edges (pairs of nodes). 
n In an undirected graph, edges are unordered pairs (sets) of 

nodes.  In a directed graph edges are ordered pairs 
(tuples) of nodes.

n Path: sequence of nodes (v0..vn)  s.t. "i: (vi ,vi+1) is an edge. 
Path length: number of edges in the path, or sum of weights. 
Simple path: all nodes distinct. 

n Cycle: path with first and last node equal. Acyclic graph: 
graph without cycles.  DAG: directed acyclic graph.

n Two nodes are adjacent if there is an edge between them. 
In a complete graph all nodes in the graph are adjacent. 



more definitions

n An undirected graph is connected if for all nodes vi and vj
there is a path from vi to  vj . An undirected graph can be 
partitioned in connected components: maximal connected 
sub-graphs.  

n A directed graph can be partitioned in strongly connected 
components: maximal sub-graphs C where for every u and v 
in C there is a path from u to v and there is a path from v to u.

n G’(V’, E’) is a sub-graph of G(V,E) if   V’ÍV and E’Í E
n The sub-graph of G induced by V’ has all the edges 
n (u,v) Î E such that u Î V’ and v Î V’.
n In a weighted graph the edges have a weight (cost, length,..) 

associated with them.



Graph representation: adjacency matrix

n Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an 
edge, or weightuv in a weighted graph.
n For undirected graphs, each edge is represented twice.
n Space proportional to n2.
n Checking if (u, v) is an edge takes Q(1) time. 
n Identifying all outgoing edges from a node takes !(#)

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0



Graph representation: adjacency list

Adjacency list.  Node indexed array of lists.
n For undirected graphs, each edge is again represented twice.
n Space proportional to m + n.
n Checking if (u, v) is an edge takes O(degree(u)) time.
n Identifying all outgoing edges from a node takes O(degree(u)) 

time
n Identifying all edges takes Q(m + n) time.
n Cool python representation: dictionary

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

3 7



Which Implementation

n Which implementation best supports 
common graph operations:
n Is there an edge between vertex i and 

vertex j?
n Find all vertices adjacent to vertex j

n Which best uses space?
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Trees

n Def.  An undirected graph is a tree if it is connected and does not contain 
a cycle.

How many edges does a tree have?
n Given a set of nodes, build a tree step wise

n every time you add an edge, you must add a new node to the 
growing tree.  WHY?

n how many edges to connect n nodes?
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Rooted Trees

n Rooted tree.  Given a tree T, choose a root node r and 
orient each edge below r; do same for sub-trees.

n Models hierarchical structure. By rooting the tree it is 
easy to see that it has n-1 edges.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r



Traversing a Binary Tree

n Pre order
n visit the node
n go left
n go right

n In order
n go left
n visit the node
n go right

n Post order
n go left
n go right
n visit the node

n Level order / breadth first
n for d = 0 to height

n visit nodes at level d

A

B

D

G

C

E

H

F

I



Traversal Examples

A

B

D

G

C

E

H

F

I

Pre order

A B D G H C E F I

In order

G D H B A E C F I

Post order

G H D B E I F C A

Level order

A B C D E F G H I

IMPLEMENTATION of these traversals??



Tree traversal Implementation

n recursive implementation of preorder
n The steps:

n visit node
n preorder(left child)
n preorder(right child)

n What changes need to be made for in-order, 
post-order?

n How would you implement level order?



Tree traversal implementation

n Recursive implementation of preorder.  The basic 
steps:

n visit node
n preorder (left child)
n preorder (right child)

n What changes need to be made for in-order, 
post-order?

n How would you implement level order?
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Tree traversal implementation

n Recursive implementation of preorder.  The basic 
steps:

n visit node
n preorder (left child)
n preorder (right child)

n What changes need to be made for in-order, 
post-order?

n How would you implement level order?
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Connectivity

q s-t connectivity problem.  Given two node s 
and t, is there a path between s and t?

q s-t shortest path problem.  Given two nodes s 
and t, what is the length of the shortest path 
between s and t? Length: either in terms of 
number of edges, or sum of weights of the 
edges in the path
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Graph traversal

What makes it different from tree traversal
qYou can visit the same node more than once
qYou can get in a cycle
qWhat to do about it:

q Mark the nodes
-White: unvisited
-Grey: (still being considered) on the frontier: 

not all adjacent nodes have been visited yet
-Black: off the frontier: all adjacent nodes 

visited (not considered anymore) 
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Breadth First Search (BFS)

n Like level traversal in trees BFS(G, s) 
explores the edges of G, and locates every 
node reachable from s in a level order, 
using a queue

n BFS also computes the distance: number of 
edges from s to all these nodes, and the 
shortest path (minimal #edges) from s to v.

n BFS expands a frontier of discovered but not 
yet visited nodes. Nodes are colored white, 
grey or black. They start out undiscovered 
or white. 
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BFS intuition

n BFS intuition.  Explore outward from s, adding 
nodes one "layer" at a time.

n BFS algorithm.
n L0 = {s}.
n L1 = all neighbors of L0.
n L2 = all nodes not in L0 or L1, and that have an 

edge to a node in L1.
n Li+1 = all nodes that do not belong to an earlier 

layer, and that have an edge to a node in Li.
n For each i, Li consists of all nodes at distance 

exactly i from s.  There is a path between s and t iff
t appears in some layer.

20

s L1 L2 L n-1



Breadth First tree

n BFS produces a Breadth First Tree rooted at s: when 
a node v in Li+1 is discovered as a neighbor  of node 
u in Li we add edge (u,v) to the BF tree

n Property.  Let T be a BFS tree of G, and let (x,y) be 
an edge of G. Then the level of x and y differ by at 
most 1. WHY?

n Either in the same layer (2,3) for
root 1, or in two adjacent
layers (2,4) for root 1.
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Breadth First Search
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L0

L1

L2

L3



Breadth First Search (BFS)
BFS(G,s)

#d: distance,  c: color,  p: parent in BFS tree
forall v in V-s {c[v]=white; d[v]=�,p[v]=nil}
c[s]=grey; d[s]=0; p[s]=nil;
Q=empty;
enque(Q,s);
while (Q != empty)  

u = deque(Q);
forall v in adj(u)

if (c[v]==white)  
c[v]=grey; d[v]=d[u]+1; p[v]=u;        
enque(Q,v)

c[u]=black;
# don’t really need grey here, why?
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We don't use grey; we just test for unvisited (white) so we can paint v 
black (visited) immediately.



BFS complexity

n Each node is painted white once, and is enqueued
and dequeued at most once. 

n Why?  Once a node is not white, we don't enqueue/ 
dequeue it anymore.

n Enque and deque take constant time. The 
adjacency list of each node is scanned only once, 
when it is dequeued.

n Therefore time complexity for BFS is
!(|$| + |&|) or !(( +))
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Connected components

n A graph is connected if there is a path between any two nodes
n The connected component of a node s is the set of all nodes 

reachable from s

n Connected component containing the node 1 is
1, 2, 3, 4, 5, 6, 7, 8

One graph with three connected components.
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Connected components

n Given two nodes s and t, their connected 
components are either identical or disjoint

Proof: two cases: either there is a path between s and 
t or there isn’t.
n If there is a path:  take a node u in the connected 

component of s, and construct a path from t to u as 
follows:  from t to s, and then from s to u, so CCs =
CCt

n If there is no path:  assume that the intersection 
contains a node u.  Use it to construct a path 
between s and t as follows: from s to u, then u to t: 
this is a contradiction.
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Connected components

n Generic algorithm for finding
connected components

n Upon termination, R is the connected component 
containing s. Many variants, based on 
n BFS:  explore in order of distance from s.
n DFS:  explores edges from the most recently 

discovered node;  backtracks when reaching a 
dead-end.
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R = {s}  # connected component of s is initially s.
while there is an edge (u,v) where u is in R and v is not in R:

add v to R

s

u v

R


