Colorado State University

CS 320 Algorithms: Theory and Practice Wk 4: Graphs

Sanjay Rajopadhye Colorado State University Sept 2023 Topics (CLRS Ch 22, pp 589-623)

- Representation
- Breadth First Search/Depth First Search
- Connected components
- Bipartite graphs (testing)
- □(Strongly) connected components
- ² Topological Sort Colorado State University

Undirected Graphs G = (V, E)

- V = set of nodes.
- E = set of edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

What is the maximum possible value for |E|?

Directed Graphs

Directed graph. G = (V, E)

- Edge (u, v) goes from node u to node v.
- Maximum number?

- Example. Web graph hyperlink points from one web page to another.
 - Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph definitions

Graph G = (V, E), V: set of *nodes* or *vertices*,

E: set of *edges* (pairs of nodes).

- In an undirected graph, edges are unordered pairs (sets) of nodes. In a directed graph edges are ordered pairs (tuples) of nodes.
- Path: sequence of nodes $(v_0..v_n)$ s.t. $\forall i: (v_i, v_{i+1})$ is an edge. Path length: number of edges in the path, or sum of weights. Simple path: all nodes distinct.
 - *Cycle*: path with first and last node equal. *Acyclic graph*: graph without cycles. *DAG*: directed acyclic graph.
- Two nodes are *adjacent* if there is an edge between them. In a *complete graph* all nodes in the graph are adjacent.

more definitions

- An undirected graph is *connected* if for all nodes v_i and v_j there is a path from v_i to v_j . An undirected graph can be partitioned in *connected components*: maximal connected sub-graphs.
- A directed graph can be partitioned in *strongly connected components*: maximal sub-graphs C where for every u and v in C there is a path from u to v and there is a path from v to u.
- G'(V', E') is a *sub-graph* of G(V,E) if $V' \subseteq V$ and $E' \subseteq E$
- The sub-graph of G *induced* by V' has all the edges
- $(u,v) \in E$ such that $u \in V'$ and $v \in V'$.
- In a weighted graph the edges have a weight (cost, length,..) associated with them.

Graph representation: adjacency matrix

- Adjacency matrix. n-by-n matrix with A_{uv} = 1 if (u, v) is an edge, or weight_{uv} in a weighted graph.
 - For undirected graphs, each edge is represented *twice*.
 - Space proportional to n².
 - Checking if (u, v) is an edge takes $\Theta(1)$ time.
 - Identifying all outgoing edges from a node takes $\theta(n)$

Graph representation: adjacency list

Adjacency list. Node indexed array of lists.

- For undirected graphs, each edge is again represented twice.
- Space proportional to m + n.
- Checking if (u, v) is an edge takes O(degree(u)) time.
- Identifying all outgoing edges from a node takes O(degree(u)) time
- Identifying all edges takes $\Theta(m + n)$ time.
- Cool python representation: dictionary

Which Implementation

Which implementation best supports common graph operations:

- Is there an edge between vertex i and vertex j?
- Find all vertices adjacent to vertex j

Which best uses space?

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

How many edges does a tree have?

- Given a set of nodes, build a tree step wise
 - every time you add an edge, you must add a new node to the growing tree. WHY?
 - how many edges to connect n nodes?

Rooted Trees

- Rooted tree. Given a tree T, choose a root node r and orient each edge below r; do same for sub-trees.
- Models hierarchical structure. By rooting the tree it is easy to see that it has n-1 edges.

the same tree, rooted at 1

Colorado State University

a tree

Traversing a Binary Tree

Α

E

C

F

T

В

Η

D

Pre order

- visit the node
- go left
- go right

In order

- go left
- visit the node

G

go right

- Post order
 - go left
 - go right
 - visit the node
 - Level order / breadth first
 - for d = 0 to height
 - visit nodes at level d

Traversal Examples

Pre order

ABDGHCEFI

In order

GDHBAECFI

Post order

GHDBEIFCA

Level order

ABCDEFGHI

IMPLEMENTATION of these traversals?? Colorado State University **Tree traversal Implementation**

recursive implementation of preorder

The steps:

- visit node
- preorder(left child)
- preorder(right child)
- What changes need to be made for in-order, post-order?
- How would you implement level order?

Tree traversal implementation

- Recursive implementation of preorder. The basic steps:
 - visit node
 - preorder (left child)
 - preorder (right child)
- What changes need to be made for in-order, post-order?
 - How would you implement level order?

Tree traversal implementation

- Recursive implementation of preorder. The basic steps:
 - visit node
 - preorder (left child)
 - preorder (right child)
- What changes need to be made for in-order, post-order?
 - How would you implement level order?

Connectivity

- s-t connectivity problem. Given two node s and t, is there a path between s and t?
- s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t? Length: either in terms of number of edges, or sum of weights of the edges in the path

Graph traversal

What makes it different from tree traversal

You can visit the same node more than once

You can get in a cycle

What to do about it:

- \Box *Mark* the nodes
 - -White: unvisited

- -Grey: (still being considered) on the frontier: not all adjacent nodes have been visited yet
- -Black: off the frontier: all adjacent nodes visited (not considered anymore)

Breadth First Search (BFS)

- Like *level traversal* in trees BFS(G, s) explores the edges of G, and locates every node reachable from s in a *level order*, using a queue
- BFS also computes the *distance*: number of edges from s to all these nodes, and the *shortest path* (minimal #edges) from s to v.
- BFS expands a *frontier* of *discovered* but not yet visited nodes. Nodes are colored white, grey or black. They start out undiscovered or white.

BFS intuition

- BFS intuition. Explore outward from s, adding nodes one "layer" at a time.
- BFS algorithm.
 - $L_0 = \{s\}.$
 - \blacksquare L_1 = all neighbors of L_0 .
 - \blacksquare $L_2 =$ all nodes not in L_0 or L_1 , and that have an edge to a node in L_1 .
 - \blacksquare L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .
- For each i, L consists of all nodes at distance exactly i from s. There is a path between s and \dagger iff t appears in some layer.

Colorado State Universit

 \mathbf{L}_2

 \mathbf{L}_1

000

Breadth First tree

BFS produces a Breadth First Tree rooted at s: when a node v in L_{i+1} is discovered as a neighbor of node u in L_i we add edge (u,v) to the BF tree

- Property. Let T be a BFS tree of G, and let (x,y) be an edge of G. Then the level of x and y differ by at most 1. WHY?
- Either in the same layer (2,3) for root 1, or in two adjacent layers (2,4) for root 1.

Breadth First Search

Breadth First Search (BFS)

```
BFS(G,s)
   #d: distance, c: color, p: parent in BFS tree
   forall v in V-s {c[v]=white; d[v]= ,p[v]=nil}
   c[s]=grey; d[s]=0; p[s]=nil;
   Q=empty;
   enque(Q,s);
   while (Q != empty)
     u = deque(Q);
      forall v in adj(u)
         if (c[v]==white)
           c[v]=grey; d[v]=d[u]+1; p[v]=u;
           enque(Q,v)
     c[u]=black;
    # don't really need grey here, why?
We don't use grey; we just test for unvisited (white) so we can paint v
black (visited) immediately.
                               Colorado State Universit
```

BFS complexity

- Each node is painted white once, and is enqueued and dequeued at most once.
- Why? Once a node is not white, we don't enqueue/ dequeue it anymore.
- Enque and deque take constant time. The adjacency list of each node is scanned only once, when it is dequeued.

Therefore time complexity for BFS is O(|V| + |E|) or O(n + m)

Connected components

A graph is *connected* if there is a path between any two nodes
 The *connected component* of a node s is the set of all nodes reachable from s

Connected component containing the node 1 is $\{1, 2, 3, 4, 5, 6, 7, 8\}$

One graph with three connected components.

Connected components

- Given two nodes s and †, their connected components are either identical or disjoint
 Proof: two cases: either there is a path between s and † or there isn't.
- If there is a path: take a node u in the connected component of s, and construct a path from to u as follows: from to s, and then from s to u, so CC_s = CC_t
- If there is no path: assume that the intersection contains a node u. Use it to construct a path between s and t as follows: from s to u, then u to t: this is a contradiction.

Connected components

 Generic algorithm for finding connected components

R = {s} # connected component of s is initially s.
while there is an edge (u,v) where u is in R and v is not in R:
add v to R

- Upon termination, R is the connected component containing s. Many variants, based on
 - BFS: explore in order of distance from s.
 - DFS: explores edges from the most recently discovered node; backtracks when reaching a dead-end.