
CS 320
Algorithms: Theory and Practice

Wk 4: Graphs

Sanjay Rajopadhye
Colorado State University

Sept 2023

2

Topics (CLRS Ch 22, pp 589-623)

q Representation

qBreadth First Search/Depth First Search

qConnected components

qCycles

qBipartite graphs (testing)

q(Strongly) connected components

qTopological Sort

3

Undirected Graphs G = (V, E)

n V = set of nodes.
n E = set of edges between pairs of nodes.
n Captures pairwise relationship between objects.
n Graph size parameters: n = |V|, m = |E|.

n What is the maximum possible value for |E|?

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

n = 8

m = 11

4

Directed Graphs

n Directed graph. G = (V, E)
n Edge (u, v) goes from node u to node v.
n Maximum number?

n Example. Web graph - hyperlink points from one web page
to another.
n Modern web search engines exploit hyperlink structure to

rank web pages by importance.

Graph definitions

n Graph G = (V, E), V: set of nodes or vertices,
n E: set of edges (pairs of nodes).
n In an undirected graph, edges are unordered pairs (sets) of

nodes. In a directed graph edges are ordered pairs
(tuples) of nodes.

n Path: sequence of nodes (v0..vn) s.t. "i: (vi ,vi+1) is an edge.
Path length: number of edges in the path, or sum of weights.
Simple path: all nodes distinct.

n Cycle: path with first and last node equal. Acyclic graph:
graph without cycles. DAG: directed acyclic graph.

n Two nodes are adjacent if there is an edge between them.
In a complete graph all nodes in the graph are adjacent.

more definitions

n An undirected graph is connected if for all nodes vi and vj
there is a path from vi to vj . An undirected graph can be
partitioned in connected components: maximal connected
sub-graphs.

n A directed graph can be partitioned in strongly connected
components: maximal sub-graphs C where for every u and v
in C there is a path from u to v and there is a path from v to u.

n G’(V’, E’) is a sub-graph of G(V,E) if V’ÍV and E’Í E
n The sub-graph of G induced by V’ has all the edges
n (u,v) Î E such that u Î V’ and v Î V’.
n In a weighted graph the edges have a weight (cost, length,..)

associated with them.

Graph representation: adjacency matrix

n Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an
edge, or weightuv in a weighted graph.
n For undirected graphs, each edge is represented twice.
n Space proportional to n2.
n Checking if (u, v) is an edge takes Q(1) time.
n Identifying all outgoing edges from a node takes !(#)

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Graph representation: adjacency list

Adjacency list. Node indexed array of lists.
n For undirected graphs, each edge is again represented twice.
n Space proportional to m + n.
n Checking if (u, v) is an edge takes O(degree(u)) time.
n Identifying all outgoing edges from a node takes O(degree(u))

time
n Identifying all edges takes Q(m + n) time.
n Cool python representation: dictionary

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

3 7

Which Implementation

n Which implementation best supports
common graph operations:
n Is there an edge between vertex i and

vertex j?
n Find all vertices adjacent to vertex j

n Which best uses space?

9

10

Trees

n Def. An undirected graph is a tree if it is connected and does not contain
a cycle.

How many edges does a tree have?
n Given a set of nodes, build a tree step wise

n every time you add an edge, you must add a new node to the
growing tree. WHY?

n how many edges to connect n nodes?

11

Rooted Trees

n Rooted tree. Given a tree T, choose a root node r and
orient each edge below r; do same for sub-trees.

n Models hierarchical structure. By rooting the tree it is
easy to see that it has n-1 edges.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

Traversing a Binary Tree

n Pre order
n visit the node
n go left
n go right

n In order
n go left
n visit the node
n go right

n Post order
n go left
n go right
n visit the node

n Level order / breadth first
n for d = 0 to height

n visit nodes at level d

A

B

D

G

C

E

H

F

I

Traversal Examples

A

B

D

G

C

E

H

F

I

Pre order

A B D G H C E F I

In order

G D H B A E C F I

Post order

G H D B E I F C A

Level order

A B C D E F G H I

IMPLEMENTATION of these traversals??

Tree traversal Implementation

n recursive implementation of preorder
n The steps:

n visit node
n preorder(left child)
n preorder(right child)

n What changes need to be made for in-order,
post-order?

n How would you implement level order?

Tree traversal implementation

n Recursive implementation of preorder. The basic
steps:

n visit node
n preorder (left child)
n preorder (right child)

n What changes need to be made for in-order,
post-order?

n How would you implement level order?

15

Tree traversal implementation

n Recursive implementation of preorder. The basic
steps:

n visit node
n preorder (left child)
n preorder (right child)

n What changes need to be made for in-order,
post-order?

n How would you implement level order?

16

Connectivity

q s-t connectivity problem. Given two node s
and t, is there a path between s and t?

q s-t shortest path problem. Given two nodes s
and t, what is the length of the shortest path
between s and t? Length: either in terms of
number of edges, or sum of weights of the
edges in the path

17

Graph traversal

What makes it different from tree traversal
qYou can visit the same node more than once
qYou can get in a cycle
qWhat to do about it:

q Mark the nodes
-White: unvisited
-Grey: (still being considered) on the frontier:

not all adjacent nodes have been visited yet
-Black: off the frontier: all adjacent nodes

visited (not considered anymore)

18

Breadth First Search (BFS)

n Like level traversal in trees BFS(G, s)
explores the edges of G, and locates every
node reachable from s in a level order,
using a queue

n BFS also computes the distance: number of
edges from s to all these nodes, and the
shortest path (minimal #edges) from s to v.

n BFS expands a frontier of discovered but not
yet visited nodes. Nodes are colored white,
grey or black. They start out undiscovered
or white.

19

BFS intuition

n BFS intuition. Explore outward from s, adding
nodes one "layer" at a time.

n BFS algorithm.
n L0 = {s}.
n L1 = all neighbors of L0.
n L2 = all nodes not in L0 or L1, and that have an

edge to a node in L1.
n Li+1 = all nodes that do not belong to an earlier

layer, and that have an edge to a node in Li.
n For each i, Li consists of all nodes at distance

exactly i from s. There is a path between s and t iff
t appears in some layer.

20

s L1 L2 L n-1

Breadth First tree

n BFS produces a Breadth First Tree rooted at s: when
a node v in Li+1 is discovered as a neighbor of node
u in Li we add edge (u,v) to the BF tree

n Property. Let T be a BFS tree of G, and let (x,y) be
an edge of G. Then the level of x and y differ by at
most 1. WHY?

n Either in the same layer (2,3) for
root 1, or in two adjacent
layers (2,4) for root 1.

21

s L1 L2 L n-1

Breadth First Search

22

L0

L1

L2

L3

Breadth First Search (BFS)
BFS(G,s)

#d: distance, c: color, p: parent in BFS tree
forall v in V-s {c[v]=white; d[v]=�,p[v]=nil}
c[s]=grey; d[s]=0; p[s]=nil;
Q=empty;
enque(Q,s);
while (Q != empty)

u = deque(Q);
forall v in adj(u)

if (c[v]==white)
c[v]=grey; d[v]=d[u]+1; p[v]=u;
enque(Q,v)

c[u]=black;
don’t really need grey here, why?

23

We don't use grey; we just test for unvisited (white) so we can paint v
black (visited) immediately.

BFS complexity

n Each node is painted white once, and is enqueued
and dequeued at most once.

n Why? Once a node is not white, we don't enqueue/
dequeue it anymore.

n Enque and deque take constant time. The
adjacency list of each node is scanned only once,
when it is dequeued.

n Therefore time complexity for BFS is
!(|$| + |&|) or !((+))

24

Connected components

n A graph is connected if there is a path between any two nodes
n The connected component of a node s is the set of all nodes

reachable from s

n Connected component containing the node 1 is
1, 2, 3, 4, 5, 6, 7, 8

One graph with three connected components.

25

Connected components

n Given two nodes s and t, their connected
components are either identical or disjoint

Proof: two cases: either there is a path between s and
t or there isn’t.
n If there is a path: take a node u in the connected

component of s, and construct a path from t to u as
follows: from t to s, and then from s to u, so CCs =
CCt

n If there is no path: assume that the intersection
contains a node u. Use it to construct a path
between s and t as follows: from s to u, then u to t:
this is a contradiction.

26

Connected components

n Generic algorithm for finding
connected components

n Upon termination, R is the connected component
containing s. Many variants, based on
n BFS: explore in order of distance from s.
n DFS: explores edges from the most recently

discovered node; backtracks when reaching a
dead-end.

27

R = {s} # connected component of s is initially s.
while there is an edge (u,v) where u is in R and v is not in R:

add v to R

s

u v

R

