ColoradoState University

CS 320

 Algorithms: Theory and Practice Wk 4: Graphs
Sanjay Rajopadhye

Colorado State University Sept 2023

Topics (CLRS Ch 22, pp 589-623)

\square Representation
\square Breadth First Search/Depth First Search
\square Connected components
\square Cycles
\square Bipartite graphs (testing)
\square (Strongly) connected components
${ }^{2} \square$ Topological Sort Colorado State University

Undirected Graphs G = (V, E)

- V = set of nodes.
$E=$ set of edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: $n=|V|, m=|E|$.

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8\} \\
& E=\{1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6\} \\
& n=8 \\
& m=11
\end{aligned}
$$

- What is the maximum possible value for $|E|$?

Directed Graphs

- Directed graph. G = (V, E)
- Edge (u, v) goes from node u to node v.
- Maximum number?

- Example. Web graph - hyperlink points from one web page to another.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph definitions

- Graph $G=(V, E)$, V: set of nodes or vertices,
- E: set of edges (pairs of nodes).
- In an undirected graph, edges are unordered pairs (sets) of nodes. In a directed graph edges are ordered pairs (tuples) of nodes.
- Path: sequence of nodes $\left(\mathrm{v}_{\mathbf{0}} . . \mathrm{v}_{\mathbf{n}}\right)$ s.t. $\forall \mathrm{i}:\left(\mathrm{v}_{\mathbf{i}}, \mathrm{v}_{\mathbf{i}+\mathbf{1}}\right)$ is an edge. Path length: number of edges in the path, or sum of weights. Simple path: all nodes distinct.
- Cycle: path with first and last node equal. Acyclic graph: graph without cycles. $D A G$: directed acyclic graph.
- Two nodes are adjacent if there is an edge between them. In a complete graph all nodes in the graph are adjacent.

more definitions

An undirected graph is connected if for all nodes $\mathrm{v}_{\mathbf{i}}$ and $\mathrm{v}_{\mathbf{j}}$ there is a path from $v_{\mathbf{i}}$ to $\mathrm{v}_{\mathbf{j}}$. An undirected graph can be partitioned in connected components: maximal connected sub-graphs.
A directed graph can be partitioned in strongly connected components: maximal sub-graphs C where for every u and v in C there is a path from u to v and there is a path from v to u. $\mathrm{G}^{\prime}\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ is a sub-graph of $\mathrm{G}(\mathrm{V}, \mathrm{E})$ if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$ The sub-graph of \mathbf{G} induced by V^{\prime} has all the edges $(u, v) \in E$ such that $u \in V^{\prime}$ and $v \in V^{\prime}$.

- In a weighted graph the edges have a weight (cost, length,..) associated with them.

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with $A_{u v}=1$ if (u, v) is an edge, or weight ${ }_{\text {uv }}$ in a weighted graph.

- For undirected graphs, each edge is represented twice.
- Space proportional to n^{2}.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
$■$ Identifying all outgoing edges from a node takes $\theta(n)$

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

ColoradoState University

Graph representation: adjacency list

Adjacency list. Node indexed array of lists.

- For undirected graphs, each edge is again represented twice.
- Space proportional to $m+n$.
- Checking if (u, v) is an edge takes O(degree(u)) time.
- Identifying all outgoing edges from a node takes O(degree(u)) time
- Identifying all edges takes $\Theta(m+n)$ time.
- Cool python representation: dictionary

Which Implementation

- Which implementation best supports common graph operations:
- Is there an edge between vertex i and vertex j ?
- Find all vertices adjacent to vertex j

Which best uses space?

Trees

- Def. An undirected graph is a tree if it is connected and does not contain a cycle.

How many edges does a tree have?

- Given a set of nodes, build a tree step wise
- every time you add an edge, you must add a new node to the growing tree. WHY?
- how many edges to connect n nodes?

Rooted Trees

- Rooted tree. Given a tree T, choose a root node rand orient each edge below r; do same for sub-trees.
- Models hierarchical structure. By rooting the tree it is easy to see that it has n-l edges.

a tree
root r

the same tree, rooted at l

Traversing a Binary Tree

Pre order

- visit the node
- go left
- go right

In order

- go left
- visit the node
- go right
- Post order
- go left
- go right
- visit the node
- Level order / breadth first
- for $\mathrm{d}=0$ to height
- visit nodes at level d

ColoradoState University

Traversal Examples

Pre order
ABDGHCEFI
In order

G D H B A E C FI

Post order
G H D B EIFCA

Level order
ABCDEFGHI

IMPLEMENTATION of these traversals??
Colorado State University

Tree traversal Implementation

recursive implementation of preorder

- The steps:
- visit node
- preorder(left child)
- preorder(right child)
- What changes need to be made for in-order, post-order?
How would you implement level order?

Tree traversal implementation

- Recursive implementation of preorder. The basic steps:
- visit node
- preorder (left child)
- preorder (right child)
- What changes need to be made for in-order, post-order?
- How would you implement level order?

Tree traversal implementation

- Recursive implementation of preorder. The basic steps:
- visit node
- preorder (left child)
- preorder (right child)
- What changes need to be made for in-order, post-order?
- How would you implement level order?

Connectivity

\square s-t connectivity problem. Given two node s and t, is there a path between s and t ?
\square s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t? Length: either in terms of number of edges, or sum of weights of the edges in the path

Graph traversal

What makes it different from tree traversal
\square You can visit the same node more than once
\square You can get in a cycle
\square What to do about it:
a Mark the nodes
-White: unvisited

-Grey: (still being considered) on the frontier: not all adjacent nodes have been visited yet -Black: off the frontier: all adjacent nodes visited (not considered anymore)

Breadth First Search (BFS)

- Like level traversal in trees $\operatorname{BFS}(G, s)$ explores the edges of G, and locates every node reachable from s in a level order, using a queue
- BFS also computes the distance: number of edges from s to all these nodes, and the shortest path (minimal \#edges) from s to v.
- BFS expands a frontier of discovered but not yet visited nodes. Nodes are colored white, grey or black. They start out undiscovered or white.

BFS intuition

- BFS intuition. Explore outward from s, adding nodes one "layer" at a time.
- BFS algorithm.
- $L_{0}=\{s\}$.
- $L_{1}=$ all neighbors of L_{0}.
- L_{2} = all nodes not in L_{0} or L_{1}, and that have an edge to a node in L_{1}.
- $\mathrm{L}_{i+1}=$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_{i}.
- For each i, L_{i} consists of all nodes at distance exactly ifrom s. There is a path between s and \dagger iff \dagger appears in some layer.

Breadth First tree

- BFS produces a Breadth First Tree rooted at s: when a node v in L_{i+1} is discovered as a neighbor of node u in L_{i} we add edge (u, v) to the $B F$ tree

- Property. Let T be a BFS tree of G, and let (x, y) be an edge of G. Then the level of x and y differ by at most l. WHY?
Either in the same layer $(2,3)$ for root 1 , or in two adjacent layers $(2,4)$ for root 1 .

ColoradoState University

Breadth First Search

Breadth First Search (BFS)

BFS(G,s)

\#d: distance, c: color, p: parent in BFS tree
forall v in $V-s\{c[v]=$ white; $d[v]=, p[v]=n i l\}$
$\mathrm{c}[\mathrm{s}]=$ grey; $\mathrm{d}[\mathrm{s}]=0$; $\mathrm{p}[\mathrm{s}]=$ nil;
$Q=$ empty;
enque (Q, s);
while (Q != empty)
$u=\operatorname{deque}(Q)$;
forall v in $\operatorname{adj}(u)$
if ($c[v]==$ white)
$c[v]=g r e y ; d[v]=d[u]+1 ; p[v]=u$;
enque(Q, v)
c[u]=black;
\# don't really need grey here, why?
We don't use grey; we just test for unvisited (white) so we can paint v
black (visited) immediately.

BFS complexity

Each node is painted white once, and is enqueued and dequeued at most once.

- Why? Once a node is not white, we don't enqueue/ dequeue it anymore.
- Enque and deque take constant time. The adjacency list of each node is scanned only once, when it is dequeued.
- Therefore time complexity for BFS is

$$
O(|V|+|E|) \text { or } O(n+m)
$$

Connected components

- A graph is connected if there is a path between any two nodes
- The connected component of a node s is the set of all nodes reachable from s

- Connected component containing the node 1 is

$$
\{1,2,3,4,5,6,7,8\}
$$

One graph with three connected components.

Connected components

- Given two nodes s and \dagger, their connected components are either identical or disjoint
Proof: two cases: either there is a path between s and
tor there isn't.
- If there is a path: take a node u in the connected component of s, and construct a path from \dagger to u as follows: from \dagger to s , and then from s to u , so $\mathrm{CC}_{\mathrm{s}}=$ CC +
- If there is no path: assume that the intersection contains a node u. Use it to construct a path between s and \dagger as follows: from s to u, then u to \dagger : this is a contradiction.

Connected components

- Generic algorithm for finding connected components

$R=\{s\}$ \# connected component of s is initially s.
while there is an edge (u, v) where u is in R and v is not in R :
add v to R
- Upon termination, R is the connected component containing s. Many variants, based on
- BFS: explore in order of distance from s.
- DFS: explores edges from the most recently discovered node; backtracks when reaching a dead-end.

