
Heaps & Heapsort

1

Charles Babbage (1864) Analytic Engine (schematic)



Heaps, heap sort and priority queues

priority Queue: data structure that maintains a set S 
of elements.

Each element v in S has a key key(v) that denotes the 
priority of v.

Priority Queue provides support for
adding, deleting elements, 
selection / extraction of 

smallest (Min prioQ) or largest (Max prioQ) key 
element,    

changing key value.



Applications

E.g. used in managing real time events where we 
want to get the earliest next event and events 
are added / deleted on the fly.

Sorting
! build a prioQ
! Iteratively extract the smallest element

PrioQs can be implemented using heaps



Heaps
Heap: array representation of a complete
binary tree
! every level is completely filled

except the bottom level: filled from 
left  to right

! Can compute the index of parent and 
children:   WHY?
– parent(i) = floor((i-1)/2)

leftChild(i)= 2i+1
rightChild(i)=2(i+1)

Max Heap property:
for all nodes i>0:  A[parent(i)] >= A[i]
Max heaps have the max at the root

Min heaps have the min at the root

16

10

9 3

142

78

14

16 14 10 8  7 9 3 2 4 1
0    1   2 3 4 5 6 7 8 9



Heapify(A,i,n)

To create a heap at index i, assuming left(i) and right(i) are
heaps, bubble A[i] down: swap with max  child until heap
property holds

heapify(A,i,n):
# precondition
# n is the size of the heap
# tree left(i) and tree right(i) are heaps

……. 

# postcondition:  tree A[i] is a heap 



Swapping Down

6

Swapping down enforces (max) heap property at the 
swap location: 

new<x  and y<x:          x>y and x>new
swap(x,new)

Are we done now?

x

new y

new

xy

NO! When we have swapped we need to carry 
on checking whether new is in heap position. We 
stop when that is the case.



Heap Extract
Heap extract: 

Delete (and return) root
Step 1:  replace root with last array element to keep 

completeness
Step 2:  reinstate the heap property
Which element does not necessarily have the heap 
property?

How can it be fixed?       Complexity?
heapify the root       O(log n)

Swap down: swap with maximum (maxheap), minimum   
(minheap) child as necessary, until in place. 

Sometimes called bubble down

Correctness based on the fact that we started with a heap, 
so the children of the root are heaps

7



Heap Insert
Step 1: put a new value into first open position 
(maintaining completeness), i.e. at the end of the 
array, but now we potentially violated the heap 
property, so:

Step 2: bubble up

! Re-enforcing the heap property

! Swap with parent, if new value > parent,  until in the 
right place.

! The heap property holds for the tree below the new 
value,  when swapping up. WHY? We only compared the 
new element to the parent, not to the sibling!

8



Swapping up

9

Swapping up enforces heap property for the sub tree below 
the new, inserted value: 

new

x y

x

newy

if (new > x) swap(x,new)                         x>y, therefore  new > y 



Building a heap

heapify performs at most lg n swaps

why?  what is n?

buildheap:  builds a heap out of an array:

! the leaves are all heaps WHY?
! heapify backwards starting at last internal node

WHY backwards?
WHY last internal node?

which node is that?



1142

78

4

LERT’S DO THE BUILDHEAP!  

1142

78

4

182

714

4

182

74

14

142

78

14

[4, 8, 7, 2, 14, 1]



Complexity buildheap

Suggestions? ...



Complexity buildheap

Initial thought: O(n lgn), but

half of the heaps are height 0
quarter are height 1
only one is height log n

It turns out that O(n lgn) is not tight!



complexity buildheap

height

0

1

2

3

max #swaps ?



complexity buildheap

height

0

1

2

3

max #swaps, see a pattern?
(What kind of growth function do you expect ?)

0  

1 

2*1+2 = 4

2*4+3 = 11 



complexity buildheap

height

0

1

2

3

max #swaps

0  = 21-2

1  = 22-3

2*1+2 = 4 = 23-4

2*4+3 = 11 = 24-5



complexity buildheap

height

0

1

2

3

max #swaps

0  = 21-2

1  = 22-3

2*1+2 = 4 = 23-4

2*4+3 = 11 = 24-5

Conjecture: 
height = h
max #swaps = 2h+1-(h+2)

Proof: induction
base?
step:

height = (h+1)
max #swaps: 

2*(2h+1-(h+2))+(h+1)
= 2h+2-2h-4+h+1
= 2h+2-(h+3)
= 2(h+1)+1-((h+1)+2)  

n nodes àQ(n) swaps 



Heapsort, complexity

heapsort(A):
buildheap(A)      # O( n )
for i = n-1 downto 1 :                #    O( ( n )
# put max at end array

# max is removed from heap
n=n-1

# reinstate heap property     #         * ( lg n)  )

- heapify: Q(lgn)
- heapExtract: Q(lg n)
- buildheap:  Q(n)
- heapsort:   Q(n lg n)
- space: in place: Q(n)



142

78

14

1412

74

8

1482

14

7

1487

12

4

14874

1

2

DO THE HEAPSORT!

14874

1

2 148741 2



How not to heapExtract, heapInsert

21

# These "snail" implementations are NOT preserving the algorithm 
# complexity of extractMin: log n and insert: log n and are therefore
# INCORRECT! from a complexity point of view  (even though they are
# functionally correct). Remember one of the goals of our course:
#    implementing the algorithms maintaining the analyzed complexity
# What are their complexities?

def snailExtractMin(A):
n = len(A)
if n == 0:

return None
min = A[0]
A[0]=A[n-1]
A.pop()
buildHeap(A)   #  O(n)
return min

def snailInsert(A,v):
A.append(v)
buildHeap(A)  #   O(n)



Priority Queues

heaps can be used to implement priority queues:

! each value associated with a key
! max priority queue S has operations that maintain 

the heap property of S
– max(S)  returning max element
– Extract-max(S) extracting and returning max 
element

– increase key(S,x,k)  increasing the key value of x
– insert(S,x)
• put x at end of S
• bubble x up in place


