
Algorithm runtime analysis and computational 
tractability
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Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily 
guide the future course of the science.  Whenever any 
result is sought by its aid, the question will arise - By what 
course of calculation can these results be arrived at by the 
machine in the shortest time?  - Charles Babbage

Analytic Engine (schematic)



A Survey of Common Running Times



Constant time:  O(1)

A single line of code that involves “simple” 
expressions, e.g.:
² Arithmetical operations (+,-,*,/) for fixed size 

inputs
² assignments (x = simple expression) 
² conditionals with simple sub-expressions
² function calls (excluding the time spent in the 

called function)
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Logarithmic time

Example of a problem with O(log(n)) bound: 

binary search

How did we get that bound?
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Guessing game
I have a number between 0 and 63
How many (Y/N) questions do you need to find it? 

What’s the number?

What (kind of) questions would you ask?
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Guessing game
I have a number between 0 and 63
How many (Y/N) questions do you need to find it? 

is it >=  32    N
is it >=  16    Y
is it >=  24    N
is it >=  20    N
is it >=  18    Y
is it >=  19    Y

What’s the number?
19

Take N=0 and Y=1, what is 010011 ?
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log(n) and algorithms

When in each step of an algorithm we halve the size 
of the problem then it takes log2n steps to get to the 
base case

We often use log(n) when we should use  floor(log(n)). 
That's OK since floor(log(n)) is Q(log(n))

Similarly, if we divide a problem into k equal  parts the 
number of steps is logkn.  For the purposes of big-O 
analysis it doesn’t matter since logan is O(logbn)



Logarithms

definition:
bx = a  à x = logba,  eg 23=8,  log28=3

² log(x*y) = log x + log y because bx by = bx+y

² log(x/y) = log x – log y
² log xa = a log x
² log x is a 1-to-1 monotonically (slow) growing function

² logax = logbx / logba
² ylog x = xlog y

€ 

b logb a =a    logb b=1        log1=0

€ 

log x = log y ⇔ x = y



logax = logbx / logba

9

€ 

blogb x = x = aloga x = b(logb a )(loga x )

logb x = (logb a)(loga x)
loga x = logb x /logb a

therefore logax = O(logbx) for any a and b



ylog x = xlog y
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€ 

x logb y =

y logy x logb y =

y(logb x / logb y ) logb y =

y logb x



Combinations of functions /code fragments
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AdditiveTheorem:

Sequences of code are additive in complexity:

int c = 0;
for(int i=0; i<n; i++)

c++;
for(int j=0; j<m; j++)

c++;

Complexity?

What is counting the complexity?

Suppose that f1(x) is O(g1(x)) and f2 (x) is O(g2 (x)). 
Then ( f1 + f2 )(x) is O(max(g1(x),g2 (x)).



Combinations of functions /code fragments
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Multiplicative Theorem: 

Nested code is multiplicative in complexity
for(int i=0; i<n; i++)

for(int j=0; j<m; j++)
c++;

Complexity?

BUT, be careful with nests where the inner loop depends outer loop:
int b = n;
while(b>0){

b/=2;
for(int i=0; i<b; i++)

c++;
}

 

Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). 
Then ( f1 f2)(x) is O(g1(x)g2(x)).



Recursive Code

Draw the call tree, and assert the number of nodes in the tree 
and their individual complexity, as a function of n.
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Recursive Code

Draw the call tree, and assert the number of nodes in the tree 
and their individual complexity, as a function of n.
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public int divCo(int n){
if(n<=1)

return 1;
else

return 1 + divCo(n-1) + divCo(n-1);
}

How many recursive calls?   

How much work per call?
What is the role of “return 1” and return 1+…” ?
So what does this function count?

Big O complexity?



15

How many recursive calls?   

How much work per call?
What is the role of “return 1” and return 1+…” ?
So what does this function count?

Big O complexity?
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Linear Time:  O(n)

Linear time.  Running time is proportional to the size of 
the input.

Computing the maximum. Compute maximum of n numbers 
a1, …, an.

Also Q(n) ?

max ¬ a1
for i = 2 to n {

if (ai > max)
max ¬ ai

}
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Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with 
B = b1,b2,…,bn into a single sorted list.

Claim.  Merging two lists of size n takes O(n) time.

i = 1, j = 1
while (both lists are nonempty) {

if (ai £ bj) append ai to output list and increment i
else append bj to output list and increment j

}
append remainder of nonempty list to output list



Linear Time:  O(n)

Polynomial evaluation.  Given

A(x) = anxn + an-1xn-1 +...+ a1x + a0     (an!=0)

Evaluate A(x)

How not to do it:

an*exp(x,n) + an-1*exp(x,n-1) +...+ a1*x + a0

Why not?



How to do it: Horner's rule

€ 

anx
n + an−1x

n−1 + ...+ a1x
1 + a0 =

(anx
n−1 + an−1x

n−2 + ...+ a1)x + a0 = ... =
(...(anx + an−1)x + an−2)x...+ a1)x + a0

y=a[n]
for (i=n-1;i>=0;i--)

y = y *x + a[i]



Polynomial evaluation using Horner: complexity

Lower bound: Ω(n) because we need to 
access each a[i] at least once

Upper bound: O(n)

Closed problem!

But what if   A(x) = xn



A(x)=xn

Recurrence:  
x2n=xn *xn x2n+1=x * x2n

Complexity?

def pwr(x, n) :
if (n==0) : return 1
if odd(n) : 

return x * pwr(x, n-1)
else :

a = pwr(x, n/2)
return a * a



A glass-dropping experiment

u You are testing a model of glass jars, and want to 
know from what height you can drop a jar without 
it breaking.  You can drop the jar from heights of 
1,…,n foot heights. Higher means faster means 
more likely to break.

u You want to minimize the amount of work (number 
of heights you drop a jar from).  Your strategy 
would depend on the number of jars you have 
available.

v If you have a single jar:  
v do linear search (O(n) work).

v If you have an unlimited number of jars: 
v do binary search (O(log n) work)

v Can you design a strategy for the case you 
have 2 jars, resulting in a bound that is 
strictly less than O(n)?
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http://xkcd.com/510/
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O(n log n) Time

Often arises in divide-and-conquer algorithms like 
mergesort.

mergesort(A) :
if len(A) <= 1 return A
else return merge(mergesort(left half(A)),

mergesort(right half(A)))
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Merge Sort - Divide

{7,3,2,9,1,6,4,5}

{7,3,2,9} {1,6,4,5}

{7,3} {2,9} {1,6} {4,5}

{7} {3} {2} {9} {1} {6} {4} {5}
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Merge Sort - Merge

{1,2,3,4,5,6,7,9}

{2,3,7,9} {1,4,5,6}

{3,7} {2,9} {1,6} {4,5}

{7} {3} {2} {9} {1} {6} {4} {5}



O(n log n)

mergesort(A) :
if len(A) <= 1 return A
else return merge(mergesort(left half(A)),

mergesort(right half(A)))

{7} {3} {2} {9} {1} {6} {4} {5}

{1,2,3,4,5,6,7,9}

{2,3,7,9} {1,4,5,6}

{3,7} {2,9} {1,6} {4,5}

How many levels? 
WHY?

At level i
! work done

– split
– merge

! total work?
Total depth?
Total work?



Quadratic Time:  O(n2)

Quadratic time example.  Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, 
y1), …, (xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. W(n2) seems inevitable, but . . . . 

min ¬ (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
for j = i+1 to n {

d ¬ (xi - xj)2 + (yi - yj)2

if (d < min)
min ¬ d

}
}
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Cubic Time:  O(n3)

Example 1:  Matrix multiplication
Tight?

Example 2: Set disjoint-ness. Given n sets S1, …, Sn each of which is a 
subset of 1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

what do we need for this to be O(n3) ?

foreach set Si {
foreach other set Sj {

foreach element p of Si {
determine whether p also belongs to Sj

}
if (no element of Si belongs to Sj)

report that Si and Sj are disjoint
}

}



Largest interval sum (maximum segment sum)

Given an array A[0],…,A[n – 1], find indices i,j such that the sum 
A[i] +… +A[j] is maximized.

Naïve algorithm :

maximum_sum = - infinity
for i in range(n - 1) :

for j in range(i, n) : 
current_sum = A[i] +… +A[j]
if current_sum >= maximum_sum :

maximum_sum = current_sum
save the values of i and j

big O bound?

Can we do better?
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Example:

A = [2, -3, 4, 2, 5, 7, -10, 8, 12]
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Polynomial Time:  O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that 
no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

! Check whether S is an independent set = O(k2).
! Number of k element subsets = 
! O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)

report S is an independent set
}

}
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k!

poly-time for k=17,
but not practical

k is a constant
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Exponential Time

Independent set. Given a graph, what is the maximum size of an 
independent set?

O(n2 2n) solution. Enumerate all subsets.

For some problems (e.g. TSP) we need to consider all 
permutations.  The factorial function (n!)  grows much faster 
than 2n

S* ¬ f
foreach subset S of nodes {

check whether S in an independent set
if (S is largest independent set seen so far)

update S* ¬ S
}

}



O(exponential)

Questions

1.  Is  2n O(3n)  ?

2. Is  3n O(2n)

3.  Is  2n O(n!)  ?

4.  Is  n!  O(2n) ?

5.  Is  log2 n  O(log3 n) ?

6.  Is  log3 n  O(log2 n) ?
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Polynomial, NP, Exponential 

Some problems (such as matrix multiply) have a polynomial 
complexity solution: an O(np) time algorithm solving them. 
(p constant)

Some problems (such as Hanoi) take an exponential time to 
solve: Θ(pn)  (p constant)

For some problems we only have an exponential solution, 
but we don't know if there exists a polynomial solution. 
Trial and error algorithms are the only ones we have so 
far to find an exact solution, and if we would always make 
the right guess, these algorithms would take polynomial 
time. 

We call these problems NP (non deterministic polynomial) 
We will discuss NP later. 



Some NP problems

TSP: Travelling Salesman
given cities c1,c2,...,cn and distances between
all of these, find a minimal tour connecting all cities.

SAT: Satisfiability
given a boolean expression E with boolean variables
x1,x2,...,xn determine a truth assignment to all xi
making E true



Back tracking

Back tracking searches (walks) a state space, at each 
choice point it guesses a choice.

In a leaf (no further choices) if solution found OK, 
else go back to last choice point and pick another 
move.

NP is the class of problems for which we can check in 
polynomial time whether it is correct (certificates, 
later)



Coping with intractability

NP problems become intractable quickly

TSP for 100 cities?  

How would you enumerate all possible tours? How many?

Coping with intractability:
! Approximation: Find a nearly optimal tour
! Randomization: use a probabilistic algorithm using 

"coin tosses"  (eg prime witnesses)


