
CS 320
Algorithms: Theory and Practice

PA1: Line-of-Sight

Sanjay Rajopadhye
Colorado State University

Aug 2023

Problem statement

Given
n an array, X[i,j] of the elevations of points in a (hilly)

terrain, and
n information about where the sun currently is,

determine, for each point, whether it is sunlit or in
the shade.

Also called the line-of-sight problem.
Imagine that you were positioned at the sun (beware
Icarus) then which points in the hilly terrain would be
in your line of sight and which would be hidden from
view

2

Specification
Inputs:
n Y[i, j] is an n x n array of (floating point) numbers (in meters)
n The angle of elevation of the sun Θ ≤ 90°
n The angle of azimuth of the sun, Φ
n The horizontal distance (in meters) between adjacent points, d,

(the resolution or scale of our data)
Output:
n S[i, j] an n x n array of Booleans:

n If [i, j] is in the shade, S[i, j] is 1
n Otherwise it is 0

Simplifying assumptions & conventions:
n The azimuth is due west, Φ = 270°. So only points to the west

(i.e., on the ith row) can cast a shadow on [i, j]
n So, focus on just the ith row of Y, which we re-name as R, a 1-

dimensional array (an outer loop iterates over each row). This
Simplifies notation/figures on next few slides

3

Algorithmic Approaches

Use predicate logic and some simple reasoning. And
remember that we only look at the ith row.
n A point at j is in the shade, if some point to its west casts

a shadow on it, i.e.,

! " = ∃%: 0 ≤ % < " , + % − +["]
/(" − %) > tan Θ

n First algorithm implements this as a loop (quadratic time
per row)

n Second algorithm does an “early exit:” as soon as we
find a point that puts j in the shade, we exit the loop

n Next, we improve the complexity. Change the
existential ∃ to universal ∀ and use negation. Exploit a
running max.

4

Some easy problems
n Add up n elements of an array Θ(#)
n Max of all elements in an array Θ(#)

What if you wanted all
intermediate sums/maxima

% & = (
)*+

,
- .

Lower bound? Ω(#)
First (direct) algorithm? 0(#1)
Can do better? 0(#)

Prefix Computations

5

r = 0
for i in range(length(X)):

r += X[i]

r = 0; // minus infinity
for i in range(length(X)):

r = max (r, X[i])

for i in range(length(X)):
Y[i] = 0
for k in range(i)
Y[i] += X[k]

Y[0] = X[0]
for i in range(1,length(X)):

Y[i] = Y[i-1] + X[i]

Running Max Improvement

Calculate the negation: j is sunny if

∀": 0 ≤ " < ',) " −) '
ℎ ' − " ≤ tanΘ

Move all terms involving j and k on opposite sides
∀": 0 ≤ " < ',) ' + ℎ' tanΘ ≥) " + ℎ" tanΘ

LHS is independent of the quantified variable.
Distribute it and use max (all elements in a set are
less than some, value v if and only if the maximum
element in the set is less than v

) ' + ℎ' tanΘ ≥ max45678) " + ℎ" tanΘ
Calculate the RHS using the running max idea

6

Rules of the game

q You will write the program in python and check it in
using the Checkin tab on ~cs320

q Automatic Grading issues:
q Need to evaluate 150 programs
q Correctness alone is not enough, your algorithm must

exhibit the right asymptotic complexity – quadratic/cubic,
and in some cases we must know the right constant factor.

q We analyzed the complexity using the number of
comparisons (running max), which can be implemented
using an if-then-else

q Main challenge: how can a grading script count the
number of times your program evaluates an if-then-else

7

Rules of the game

q We can’t do it. Smart solutions welcome

Workaround

q Thou shalt not program with if-then-else
q Thou shalt use a special function that will be

provided
q When that function is executed, it also updates a

global counter (initialized to 0 before the grading
script calls your function)

8

