ColoradoState University

CS CS 501

 Algorithms: Theory and Practice Introduction 01.2
Sanjay Rajopadhye (inspired by Wim Bohm)

Colorado State University Aug 2023

Questions

- Given lists of preferences or each man and woman does a stable matching even exist?
- If so, is it unique, or how many are there?
\square Can we construct it (i.e., an algorithm)?
How about this one:
for $=S$ in the set of all perfect matching
if S is stable return S
Return the empty set
\square Is it correct?
\square What is its running time?

Towards an efficient algorithm

- Initially no match
- An unmatched man m proposes to the woman w who is the highest on his list
- Will this be part of a stable matching?
- Not necessarily,
- w may like some other m^{\prime} better than m
- and m^{\prime} better likes w best
- So this is just one aspect
- Engagement - a temporary matching that may be broken
- w is prepared to change her mind if/when a man higher on her list proposes

while anyone is unmatched....

- An unmatched man m proposes to the woman w who is the highest remaining on his list (i.e., to whom he hasn't yet proposed)
- Why is this important?
- Termination
- If w is free, they become engaged
- If w is engaged to some m^{\prime}, and
- m^{\prime} is higher than m on w's list - no change
- Otherwise m and w become engaged and m becomes free

The Gayle-Shapley algorithm ${ }^{1}$

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman)
Choose such a man m
$w=$ highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)
(m, w) become engaged
else if (w prefers m to her fiancé m ')
(m, w) become engaged, m^{\prime} becomes free
else
m remains free
A few non-obvious questions:
\square How long does it take?
\square Does the algorithm return a stable matching?
Does it even return a perfect matching?
${ }^{1}$ D. Gale and L. S. Shapley: "College Admissions and the Stability of Marriage", American Mathematical Monthly $69,9-14,1962$.

Observations

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman)
Choose such a man m
$w=$ highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)
(m, w) become engaged
else if (w prefers m to her fiancé m ')
(m, w) become engaged, m^{\prime} becomes free
else
m remains free

- Each woman remains engaged from the first proposal she receives and her sequence of partners only improves
- Each man proposes to less and less preferred women
- No man proposes twice to the same woman

Claim l: complexity

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman)
Choose such a man m
$w=$ highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)
(m, w) become engaged
else if (w prefers m to her fiancé m ')
(m, w) become engaged, m^{\prime} becomes free
else
m remains free

- The algorithm terminates after at most n^{2} iterations of the while loop
- At each iteration, a man proposes (only once) to a woman he has never proposed to
- each man has only n choices
- Collectively the n men have n^{2} choices

Claim 2: correctness 1

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman)
Choose such a man m
$w=$ highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)
(m, w) become engaged
else if (w prefers m to her fiancé m ')
(m, w) become engaged, m^{\prime} becomes free
else
m remains free
When the algorithm terminates the matching is perfect (i.e., complete)
Proof by contradiction Assume there is a free man m
Because the algorithm terminates m must have proposed to all women But then all women are engaged
Hence there is no free man
Contradiction

Proof of correctness 2: stability

Claim: When the algorithm terminates, there are no unstable pairs in the Gale-Shapley matching S*
Proof (by contradiction)

- Suppose some (m, w) is an unstable pair, they each prefer the other to their partner in S^{*} (see fig)
- Case 1 m never proposed to w
$\Rightarrow \mathrm{m}$ prefers his GS partner w^{\prime} to w
$\Rightarrow(\mathrm{m}, \mathrm{w})$ is NOT unstable
- Case 2 m proposed to w
$\Rightarrow \mathrm{w}$ rejected m (right away or later)
$\Rightarrow w$ prefers her S^{*} partner m^{\prime} to m
$\Rightarrow(\mathrm{m}, \mathrm{w})$ is NOT unstable
- In either case (m, w) is NOT unstable
- \Rightarrow CONTRADICTION

Multiple solutions

For an earlier example:

$$
\begin{aligned}
& m_{1}: w_{1}, w_{2} \quad m_{2}: w_{2}, w_{1} \\
& w_{1}: m_{2}, m_{1} \quad w_{2}: m_{1}, m_{2} \\
& \text { Two stable solutions }
\end{aligned}
$$

1. $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right)\right\}$
2. $\left\{\left(m_{1}, w_{2}\right),\left(m_{2}, w_{1}\right)\right\}$

- GS will always find one of them (which)?

When will the other be found?

Summary

- Stable matching problem. Given n men and n women and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guaranteed to find a stable matching for any problem instance.

Symmetry

- The stable matching problem is symmetric w.r.t. to men and women, but the GS algorithm is asymmetric
- There is a certain unfairness in the algorithm: If all men list different women as their first choice, they will end up with their first choice, regardless of the women's preferences (see example 3).

Non determinism

Notice the linewhile (some man is free and hasn't proposed to every woman)
Choose such a man m

- The algorithm does not specify which
- Nevertheless all executions find the same matching (claim 1.7 in the reading)

