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Problem solving paradigm
1. Formulate the problem with precision (usually 

using mathematical concepts, such as sets, 
relations, and graphs, costs, benefits, 
optimization criteria)

2. (Re)design an algorithm
3. Prove its correctness
4. Analyze its complexity
5. Implement it respecting the derived complexity
n Steps 2-5 are often repeated, to 

improve efficiency
The first algorithm for Stable Matching was 
exponential,
The second was polynomial (quadratic)
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Bipartite Matching

n Stable matching was defined as matching elements 
of two disjoint sets.

n We can express this in terms of graphs. 

n A graph is bipartite if its nodes can be partitioned 
in two sets X and Y, such that the edges go from an

n x in X to a y in Y



Bipartite Matching

n Input.  Bipartite graph.
n Goal.  Find maximum cardinality 

matching.
Matching can model assignment
problems, e.g., assigning jobs to 
machines, where an edge between a 
job j and a machine m indicates that 
m can do job j, or professors and 
courses.
Same as stable matching problem?

n Not perfect
n No preferences, less information
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Interval Scheduling

n You have a resource (hotel room, printer, lecture 
room, telescope, manufacturing facility, 
professor...)

n There are requests to use the resource in the form 
of start time si and finish time fi, such that si<fi

Objective:  grant as many requests as possible.
n Two requests i and j are compatible if they don't 

overlap, i.e., 

fi ≤ sj or fj ≤ si



Interval Scheduling
n Input.  Set of jobs with start times and finish times.
n Goal.  Find maximum cardinality subset of compatible 

jobs.

n What happens if you pick the first starting (a)?, 
n the smallest (c)? What is the optimum?
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Algorithmic Approach

nThe interval scheduling problem is 
amenable to a very simple solution.

nNow that you know this, can you think 
of it using this example?

nHint:  Think how to pick a first interval 
while preserving the longest possible 
free time...
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Weighted Interval Scheduling

n Input:  Set of jobs with start times, finish 
times, and profits.

n Goal:  Find maximum profit subset of 
compatible jobs.
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Independent set

n Input: Graph.
n Goal:  Find maximum cardinality independent set.
Definition: two  nodes are 
independent if there is no edge
between them.  An independent set
is a subset of pairwise-independent nodes
Any relation to interval scheduling?
They are the same problem.  An algorithm to solve one 
can be used to solve the other – aka reduction.

The interval scheduling problem can be formulates as an 
instance of the independent set problem. Build a graph 
where nodes correspond to the interval, and there is an 
edge between any pair of nodes whose intervals are not 
compatible (what is the complexity of this construction?)
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Independent set

n There is no known efficient algorithm to solve the 
independent set problem

n But we just said that we can formulate the interval 
scheduling problem as an independent set problem
n And the former has a very efficient algorithm

n What gives?
n And what is an efficient algorithm?

n One where the only option is to try all the subsets and 
find the largest one.

n Q: How many subsets does a set of cardinality n have?
n A: 2n (recall counting from CS 220)
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Representative problems and 
their complexities

Looking ahead

n Interval scheduling has an ! log! greedy 
algorithm

n Weighted interval scheduling has an ! log!
dynamic programming algorithm

n Independent set is in NP – no known polynomial time 
algorithm exists 
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Algorithm

n An algorithm is an effective procedure
n To map the input to the output
n effective = unambiguous, executable
n Like a Turing machine

n Is there an effective algorithm for every possible 
problem?
n No, the problem must the effectively specified 

(e.g., “how many angels can dance on the head of a 
pin?” is not 

n Even if it is effectively specified, there is not always 
an algorithm to solve it

n Often occurs in analyzing programs
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Ulam's problem

Steps in running f(n) for a
few values of n:
1
2, 1
3, 10, 5, 16, 8, 4, 2, 1
4, 2, 1
5, 16, 8, 4, 2, 1
6, 3, 10, 5, 16, 8, 4, 2, 1
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
8, 4, 2, 1
9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 
2, 1
10, 5, 16, 8, 4, 2, 1

def f(n) :   
if (n==1) return 1

elif (odd(n)) return 
f(3*n+1)

else return f(n/2)



Ulam's problem

Question:
Does f(n) always stop?

n Nobody has found a
proof that f(n) stops for
all n
n Nobody has found a counter-
example – a value of n for which
the algorithm loops for ever
n A generalization of this has been proved to be 

undecidable. 
n A problem P is decidable if there is an algorithm that 

produces P(x) for every possible input x
n It is undecidable if we can prove that no such algorithm 

exists

def f(n) :   
if (n==1) return 1

elif (odd(n)) return 
f(3*n+1)

else return f(n/2)



The Halting Problem is 
undecidable

n A generalization of Ulam’s problem
n Given a program P(x) for and input x, will  P(x) 

stop on input x?
We can prove (CS420) that:
The halting problem is undecidable
i.e. there is no algorithm Halt(P,x) that decides 

whether P stops on input x (note that P and x
are parameters to Halt, so it must work 
correctly on any P and x.

But for some “nice” programs, we can prove they 
halt, e.g.:

for i in range(100): print(i)



Intractability

n Suppose we have a program, 
n does it execute a in a reasonable time?  
n e.g., towers of Hanoi (CS 220). 

Three pegs, one with n smaller and smaller 
disks, move (1 disk at a time) to another 
peg without ever placing a 

larger disk on a smaller

Monk: before a tower of Hanoi of size 100 
is moved, the world will have vanished    



hanoi

# pegs are numbers, via is computed  
# empty base case
def hanoi(n, from, to):

if (n>0) :
via = 6 - from – to
hanoi(n-1,from, via)
print "move disk", n,  " from", from, " to ",  to
hanoi(n-1,via,to);



f(n): #moves in hanoi

f(n) = # moves for tower of size n
f(n) = 2f(n-1) + 1, f(1)=1
f(1) = 1,  f(2) = 3,  f(3) = 7, f(4) = 15

n Claim f(n) = 2n-1
n How can you show that?
n By induction (CS 220)

n Was the monk right? 
n 2100 moves, say 1 per second.....
n How many years?

2100 ~ 1030  ~ 1025 days ~ 3.1022 years 
n more than the age of the universe



Is there a better algorithm? 

THE ONE MILLION DOLLAR QUESTION IN 
THIS CLASS



Is there a better algorithm for 
towers of hanoi? 

Pile(n-1) must be 
Off peg 1, and 
completely on one other peg
before disk n can be moved to its destination

n so all moves are necessary



Algorithm complexity

n Measures in units of time and space

n Linear Search X in dictionary D
i=1

while not at end and X!= D[i]:
i=i+1

n CS220: We don't know if X is in D, and we don't know 
where it is, so we can only give worst or average time 
bounds

n We don't know the time for atomic actions, so we only 
determine Orders of Magnitude 



Linear Search: time and space 
complexity

Space: n locations in D plus some local variables
Time: 

In the worst case we search all of D, so the loop 
body is executed n times
In average case analysis we compute the expected
number of steps: i.e., we sum the products of the 
probability of each option and the time cost of that 
option. In the average case the loop body is
executed about n/2 times 
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