
CS 320
Algorithms: Theory and Practice

Introduction 01.2
Representative Problems

Sanjay Rajopadhye
(inspired by Wim Bohm)

Colorado State University
Aug 2023

Problem solving paradigm
1. Formulate the problem with precision (usually

using mathematical concepts, such as sets,
relations, and graphs, costs, benefits,
optimization criteria)

2. (Re)design an algorithm
3. Prove its correctness
4. Analyze its complexity
5. Implement it respecting the derived complexity
n Steps 2-5 are often repeated, to

improve efficiency
The first algorithm for Stable Matching was
exponential,
The second was polynomial (quadratic)

2

Bipartite Matching

n Stable matching was defined as matching elements
of two disjoint sets.

n We can express this in terms of graphs.

n A graph is bipartite if its nodes can be partitioned
in two sets X and Y, such that the edges go from an

n x in X to a y in Y

Bipartite Matching

n Input. Bipartite graph.
n Goal. Find maximum cardinality

matching.
Matching can model assignment
problems, e.g., assigning jobs to
machines, where an edge between a
job j and a machine m indicates that
m can do job j, or professors and
courses.
Same as stable matching problem?

n Not perfect
n No preferences, less information

4

C

1

2

A

E

3

B

D 4

Interval Scheduling

n You have a resource (hotel room, printer, lecture
room, telescope, manufacturing facility,
professor...)

n There are requests to use the resource in the form
of start time si and finish time fi, such that si<fi

Objective: grant as many requests as possible.
n Two requests i and j are compatible if they don't

overlap, i.e.,

fi ≤ sj or fj ≤ si

Interval Scheduling
n Input. Set of jobs with start times and finish times.
n Goal. Find maximum cardinality subset of compatible

jobs.

n What happens if you pick the first starting (a)?,
n the smallest (c)? What is the optimum?

6

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Algorithmic Approach

nThe interval scheduling problem is
amenable to a very simple solution.

nNow that you know this, can you think
of it using this example?

nHint: Think how to pick a first interval
while preserving the longest possible
free time...

8

Weighted Interval Scheduling

n Input: Set of jobs with start times, finish
times, and profits.

n Goal: Find maximum profit subset of
compatible jobs.

9

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Independent set

n Input: Graph.
n Goal: Find maximum cardinality independent set.
Definition: two nodes are
independent if there is no edge
between them. An independent set
is a subset of pairwise-independent nodes
Any relation to interval scheduling?
They are the same problem. An algorithm to solve one
can be used to solve the other – aka reduction.

The interval scheduling problem can be formulates as an
instance of the independent set problem. Build a graph
where nodes correspond to the interval, and there is an
edge between any pair of nodes whose intervals are not
compatible (what is the complexity of this construction?)

10

6

2

5

1

7

3

4

6

5

1

4

Independent set

n There is no known efficient algorithm to solve the
independent set problem

n But we just said that we can formulate the interval
scheduling problem as an independent set problem
n And the former has a very efficient algorithm

n What gives?
n And what is an efficient algorithm?

n One where the only option is to try all the subsets and
find the largest one.

n Q: How many subsets does a set of cardinality n have?
n A: 2n (recall counting from CS 220)

11

Representative problems and
their complexities

Looking ahead

n Interval scheduling has an ! log! greedy
algorithm

n Weighted interval scheduling has an ! log!
dynamic programming algorithm

n Independent set is in NP – no known polynomial time
algorithm exists

12

Algorithm

n An algorithm is an effective procedure
n To map the input to the output
n effective = unambiguous, executable
n Like a Turing machine

n Is there an effective algorithm for every possible
problem?
n No, the problem must the effectively specified

(e.g., “how many angels can dance on the head of a
pin?” is not

n Even if it is effectively specified, there is not always
an algorithm to solve it

n Often occurs in analyzing programs

13

Ulam's problem

Steps in running f(n) for a
few values of n:
1
2, 1
3, 10, 5, 16, 8, 4, 2, 1
4, 2, 1
5, 16, 8, 4, 2, 1
6, 3, 10, 5, 16, 8, 4, 2, 1
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
8, 4, 2, 1
9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4,
2, 1
10, 5, 16, 8, 4, 2, 1

def f(n) :
if (n==1) return 1

elif (odd(n)) return
f(3*n+1)

else return f(n/2)

Ulam's problem

Question:
Does f(n) always stop?

n Nobody has found a
proof that f(n) stops for
all n
n Nobody has found a counter-
example – a value of n for which
the algorithm loops for ever
n A generalization of this has been proved to be

undecidable.
n A problem P is decidable if there is an algorithm that

produces P(x) for every possible input x
n It is undecidable if we can prove that no such algorithm

exists

def f(n) :
if (n==1) return 1

elif (odd(n)) return
f(3*n+1)

else return f(n/2)

The Halting Problem is
undecidable

n A generalization of Ulam’s problem
n Given a program P(x) for and input x, will P(x)

stop on input x?
We can prove (CS420) that:
The halting problem is undecidable
i.e. there is no algorithm Halt(P,x) that decides

whether P stops on input x (note that P and x
are parameters to Halt, so it must work
correctly on any P and x.

But for some “nice” programs, we can prove they
halt, e.g.:

for i in range(100): print(i)

Intractability

n Suppose we have a program,
n does it execute a in a reasonable time?
n e.g., towers of Hanoi (CS 220).

Three pegs, one with n smaller and smaller
disks, move (1 disk at a time) to another
peg without ever placing a

larger disk on a smaller

Monk: before a tower of Hanoi of size 100
is moved, the world will have vanished

hanoi

pegs are numbers, via is computed
empty base case
def hanoi(n, from, to):

if (n>0) :
via = 6 - from – to
hanoi(n-1,from, via)
print "move disk", n, " from", from, " to ", to
hanoi(n-1,via,to);

f(n): #moves in hanoi

f(n) = # moves for tower of size n
f(n) = 2f(n-1) + 1, f(1)=1
f(1) = 1, f(2) = 3, f(3) = 7, f(4) = 15

n Claim f(n) = 2n-1
n How can you show that?
n By induction (CS 220)

n Was the monk right?
n 2100 moves, say 1 per second.....
n How many years?

2100 ~ 1030 ~ 1025 days ~ 3.1022 years
n more than the age of the universe

Is there a better algorithm?

THE ONE MILLION DOLLAR QUESTION IN
THIS CLASS

Is there a better algorithm for
towers of hanoi?

Pile(n-1) must be
Off peg 1, and
completely on one other peg
before disk n can be moved to its destination

n so all moves are necessary

Algorithm complexity

n Measures in units of time and space

n Linear Search X in dictionary D
i=1

while not at end and X!= D[i]:
i=i+1

n CS220: We don't know if X is in D, and we don't know
where it is, so we can only give worst or average time
bounds

n We don't know the time for atomic actions, so we only
determine Orders of Magnitude

Linear Search: time and space
complexity

Space: n locations in D plus some local variables
Time:

In the worst case we search all of D, so the loop
body is executed n times
In average case analysis we compute the expected
number of steps: i.e., we sum the products of the
probability of each option and the time cost of that
option. In the average case the loop body is
executed about n/2 times

€

1/n * i =1/n i = (n(n +1)
i=1

n

∑ /2) /n ≈ n /2
i=1

n

∑

