
CS320 Algorithms: Theory and Practice
Fall 2022

(based on original slides by Wim Böhm)

Course Introduction

1

"For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even
mysterious. But once unlocked, they cast a brilliant new
light on some aspect of computing." - Francis Sullivan

Welcome back!!

• We hope you are all alright! Welcome back to school

• This class is hybrid in-person and on-line. Lectures are live captured and available in
Canvas via echo360.

• Students in the online section will do everything remotely.

• Students in the on-campus section will do many things remotely

• (canvas quizzes, worksheets, programming assignments, etc.) but

• will have proctored exams (in person)

• And may optionally watch lecture remotely or in person

• TAs will do help desk and office hours in person (in CSB 130) and Teams.

• If you have issues (illness, uncertainties, timing, anything really) please don’t hesitate
to let me (Sanjay Rajopadhye) know through e-mail or office hours.

• This is a 3 credit course with no recitations. TAs will help you with quizzes and
assignments using helpdesk. I will have office hours in person and on Teams.

2

Course Objectives
Algorithms:
! Design – strategies for algorithmic problem solving
! Reasoning about algorithm correctness
! Analysis of time and space complexity
! Implementation – create an implementation that respects the
runtime analysis. In this class a program has to be correct and has to
have the optimal complexity

Algorithmic Approaches / Classes:
! Greedy
! Divide and Conquer
! Dynamic programming
Parallel Algorithms:
! Dynamic Multi-threading
Problem Classes:
! Reduction, P, NP, NPC

Grading (tentative)

• Prerequisites (quizzes+exam) 10%
• Programming Assignments 15%
• Worksheets 10%
• Quizzes 15%
• Exams 50%

See CS320 web site:
https://www.cs.colostate.edu/~cs320

https://www.cs.colostate.edu/~cs320

Implementation
Programs will be written in Python:
v Powerful data structures

v tuples, dictionaries, (array) lists
v Simple, easy to learn syntax
v Highly readable, compact code
v An extensive standard library
v Strong support for integration with

other languages (C, C++, Java) and libraries
(numpy, jupyter, CUDA)

We assume you are familiar with Python (CS220)!

Python vs. e.g. Java
What makes Python different from Java?
v Java is statically typed, i.e. variables are bound to

types at compile time. This avoids run time errors, but
makes java programs more rigid.

v Python is dynamically typed, i.e. a variable takes on some
type at run time, and its type can change. A variable can be
of one type somewhere in the code and of another type
somewhere else

f = open(filename)
for line in f:

line is a String here, split it using ” “ as delimiter
line = line.strip().split(" ")
line is an (Array)List of Strings here

v This makes python programs more flexible, but can
cause strange run time errors, e.g. when a caller expects a
return value but the called function does not return one.

6

Our approach to problem solving
q Formulate it with precision (usually using mathematical

concepts, such as sets, relations, and graphs)
q Design an algorithm and its main data structures
q Prove its correctness
q Analyze its complexity (time, space)

q Improve the initial algorithm (in terms of
complexity), preserving correctness

q Implement it, preserving the analyzed complexity!
In the lab PAs we will test for that. So in this course
we check for correctness and complexity of your PAs.

7

Our first problem: matching
Two parties e.g., companies and applicants
! Each applicant has a preference list of companies
! Each company has a preference list of applicants
! A possible scenario:

cA offers job to aA
aA accepts, but now gets offer from cX
aA likes cX more, retracts offer from cA

We would like a systematic method for assigning
applicants to companies– stable matching

! A system like this is e.g. in use for matching medical
residents with hospitals

8

Stable Matching

Goal. Given a set of preferences among companies and
applicants, design a stable matching algorithm.

Unstable pair: applicant x and company y are an
unstable pair (not in the current matching) if:
! Both x prefers y to its assigned company
! And y prefers x to one of its selected applicants.

Stable assignment. Assignment without unstable pairs.
! Natural and desirable condition.

9

Is some control possible?

Given the preference lists of applicants A and
companies C, can we assign As to Cs such that

for each C
for each A not scheduled to work for C

either C prefers all its students to A
or A prefers current company to C

Why or, and not and.
If this holds, then what?

Stable state

Given the preference lists of applicants A and
companies C, can we assign As to Cs such that

for each C
for each A not scheduled to work for C

C prefers all its students to A
or A prefers current company to C

or: Morgan’s law not(A and B) = not A or not B

If this holds, there is no unstable pair, and therefore
individual self interest will prevent changes in
student / company matches: Stable state

Simplifying the problem

Matching students/companies problem messy:
! Company may look for multiple applicants,

students looking for a single internship

! Maybe there are more jobs than applicants,
or fewer jobs than applicants

! Maybe some applicants/jobs are equally
liked by companies/applicants (partial
orders)

Formulate a "bare-bones" version of the
problem: match n men and n women

12

Stable Matching Problem: n women and n men
Perfect matching: Each man matched with exactly
one woman, and each woman matched with exactly
one man.

Stability: no incentive for some pair to undermine
the assignment.
! A pair (m,w) NOT IN THE CURRENT MATCHING

is an instability if BOTH m and w prefer each
other to current partners in the matching, i.e.:
BOTH m and w can improve their situation

Stable matching: perfect (i.e., complete) matching
with no unstable pairs. Stable matching problem
(Gale, Shapley 1962): Given the preference lists of n
men and n women, find a stable matching if one
exists.

13

The Stable Matching Problem
Problem: Given n men and n women where
! Each man lists women in total order of preference
! Each woman lists men in total order of preference

– A total order (remember CS220?) allows the elements of
the set to be linearly ordered.

find a stable matching of all men and women

14

Zeus Amy ClareBertha

Yancey Bertha ClareAmy

Xavier Amy ClareBertha

1st 2nd 3rd

Men’s Preference Profile

favorite least favorite

Clare Xavier ZeusYancey

Bertha Xavier ZeusYancey

Amy Yancey ZeusXavier

1st 2nd 3rd

Women’s Preference Profile

favorite least favorite

Do it, Do it

Create all possible perfect matchings and check (in)stability

{ (X,A), (Y,B), (Z,C) }

{ (X,A), (Y,C), (Z,B) }

{ (X,B), (Y,A), (Z,C) }

{ (X,B), (Y,C), (Z,A) }

{ (X,C), (Y,A), (Z,B) }

{ (X,C), (Y,B), (Z,A) }

15

Z A CB
Y B CA
X A CB

1st 2nd 3rd

Men’s Preference Profile

favorite least favorite

C X ZY
B X ZY
A Y ZX

1st 2nd 3rd

Women’s Preference Profile

favorite least favorite

Stable (neither Z nor C can improve)

Instability: (Y,B) Y prefers B and B prefers Y

Stable

Instability: (X,A)

Instability: (X,B)

Instability: (X,A)

Formulation

Men: M={m1, ..., mn} Women: W={w1, ..., wn}
The Cartesian Product MxW is the set of all possible
ordered pairs.

A matching S is a set of pairs (subset of MxW) such
that each m and w occurs in at most one pair

A perfect (complete) matching S is a set of pairs
(subset of MxW) such that each individual occurs in
exactly one pair
How many perfect matchings are there?

n n-1 n-2 1
m1 m2 m3 … mn

Instability

Given a perfect match, e.g.,

S = { (m1,w1), (m2,w2) }

But m1 prefers w2 and w2 prefers m1
(m1,w2) is an instability for S

(notice again that (m1,w2) is not in S)

S is a stable matching if:
! S is perfect
! and there is no instability in S

17

Example 1

m1: w1, w2 m2: w1, w2
w1: m1, m2 w2: m1, m2

What are the perfect matchings?

Example 1

m1: w1, w2 m2: w1, w2
w1: m1, m2 w2: m1, m2

1. { (m1,w1), (m2,w2) }
2. { (m1,w2), (m2,w1) }

which is stable/instable?

Example 1

m1: w1, w2 m2: w1, w2
w1: m1, m2 w2: m1, m2

1. { (m1,w1), (m2,w2) } stable, WHY?

2. { (m1,w2), (m2,w1) } instable, WHY?

w2 prefers m1, but m1 prefers w1,
m2 prefers w1, but w1 prefers m1

(m1,w1)

Example 2
m1: w1, w2 m2: w2, w1
w1: m2, m1 w2: m1, m2

1. { (m1,w1), (m2,w2) }
2. { (m1,w2), (m2,w1) }

which is / are instable/stable?
both are stable!

1: w1 prefers m2 but m2 prefers w2, w2 prefers m1 but m1 prefers w1

2: m1 prefers w1 but w1 prefers m2, m2 prefers w2 but w2 prefers m1

Conclusion?
Sometimes there is more than 1 stable matching

21

Example 3

m1: w1, w2, w3 m2: w2, w3, w1 m3: w3, w1, w2

w1: m2, m1, m3 w2: m1, m2, m3 w3: m1, m2, m3

Is { (m1,w1), (m2,w2), (m3,w3) } stable?

Is { (m1,w2), (m2,w1), (m3,w3) } stable?

Do this one yourself.

22

Questions…
! Given a preference list, does a stable

matching exist?

! Can we efficiently construct a stable
matching if there is one?

! a naive algorithm:
for S in the set of all perfect matchings :

if S is stable : return S
return None

Is this algorithm correct?
What is its running time?

23

Towards an efficient algorithm

initially: no match

An unmatched man m proposes to the woman w highest
on his list.
Will this be part of a stable matching?

Towards an efficient algorithm

initially: no match

An unmatched man m proposes to the woman w highest
on his list.
Will this be part of a stable matching?

Not necessarily: w may like some m’ better, AND?

So w and m will be in a temporary state of engagement.

w is prepared to change her mind when a man higher on
her list proposes.

m’ likes w the most

While not everyone is matched…

An unmatched man m proposes to the woman w
highest on his list to whom he hasn't yet proposed.

Why is that important?

If w is free, they become engaged

If w is engaged to m’:
If w prefers m’ over m, w stays with m’ and

m stays free
If w prefers m over m’, (m,w) become engaged

and m’ becomes free

Termination

