
Chapter 3 - Graphs

http://datamining.typepad.com/gallery/blog-map-gallery.html

2

Undirected Graphs

Undirected graph. G = (V, E)
! V = set of nodes.
! E = set of edges between pairs of nodes.
! Captures pairwise relationship between objects.
! Graph size parameters: n = |V|, m = |E|.

! What is the maximum possible value for |E|?

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

3

Directed Graphs

Directed graph. G = (V, E)
! Edge (u, v) goes from node u to node v.
! Maximum number?

Example. Web graph - hyperlink points from one web
page to another.
! Modern web search engines exploit hyperlink

structure to rank web pages by importance.

Graph definitions

Graph G = (V, E) , V: set of nodes or vertices,
E: set of edges (pairs of nodes).

In an undirected graph, edges are unordered pairs
(sets) of nodes. In a directed graph edges are ordered
pairs (tuples) of nodes.

Path: sequence of nodes (v0..vn) s.t. "i: (vi ,vi+1) is an
edge. Path length: number of edges in the path, or sum
of weights. Simple path: all nodes distinct.

Cycle: path with first and last node equal. Acyclic
graph: graph without cycles. DAG: directed acyclic
graph.

Two nodes are adjacent if there is an edge between
them. In a complete graph all nodes in the graph are
adjacent.

more definitions

An undirected graph is connected if for all nodes vi and vj
there is a path from vi to vj . An undirected graph can be
partitioned in connected components: maximal connected
sub-graphs.

A directed graph can be partitioned in strongly
connected components: maximal sub-graphs C where for
every u and v in C there is a path from u to v and there is
a path from v to u.

G’(V’, E’) is a sub-graph of G(V,E) if V’ÍV and E’Í E
The sub-graph of G induced by V’ has all the edges
(u,v) Î E such that u Î V’ and v Î V’.

In a weighted graph the edges have a weight (cost,
length,..) associated with them.

6

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is
an edge, or weightuv in a weighted graph.
! For undirected graphs, each edge is represented twice.
! Space proportional to n2.
! Checking if (u, v) is an edge takes Q(1) time.
! Identifying all outgoing edges from a node takes Q(n)

time.

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

7

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
! For undirected graphs, each edge is again represented twice.
! Space proportional to m + n.
! Checking if (u, v) is an edge takes O(degree(u)) time.
! Identifying all outgoing edges from a node takes

O(degree(u)) time
! Identifying all edges takes Q(m + n) time.
! Cool python representation: dictionary

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

Which Implementation

Which implementation best supports common
graph operations:
! Is there an edge between vertex i and

vertex j?
! Find all vertices adjacent to vertex j

Which best uses space?

8

9

Trees

Def. An undirected graph is a tree if it is connected
and does not contain a cycle.
How many edges does a tree have?

10

Trees

Def. An undirected graph is a tree if it is connected
and does not contain a cycle.
How many edges does a tree have?

Given a set of nodes, build a tree step wise
– every time you add an edge, you must add a new
node to the growing tree. WHY?

– how many edges to connect n nodes?

11

Rooted Trees

Rooted tree. Given a tree T, choose a root node r
and orient each edge below r; do same for sub-trees.

Models hierarchical structure. By rooting the tree it
is easy to see that it has n-1 edges.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

Traversing a Binary Tree

Pre order
! visit the node
! go left
! go right

In order
! go left
! visit the node
! go right

Post order
! go left
! go right
! visit the node

Level order / breadth first
! for d = 0 to height

– visit nodes at level d
A

B

D

G

C

E

H

F

I

Traversal Examples

A

B

D

G

C

E

H

F

I

Pre order

A B D G H C E F I

In order

G D H B A E C F I

Post order

G H D B E I F C A

Level order

A B C D E F G H I

IMPLEMENTATION of these traversals??

Tree traversal Implementation

recursive implementation of preorder

! The steps:
– visit node
– preorder(left child)
– preorder(right child)

! What changes need to be made for in-order, post-
order?

How would you implement level order?

15

Connectivity

s-t connectivity problem. Given two node s and t, is
there a path between s and t?

s-t shortest path problem. Given two nodes s and t,
what is the length of the shortest path between s
and t? Length: either in terms of number of edges,
or in terms of sum of weights.

Graph Traversal

What makes it different from tree traversals?

Graph Traversal

What makes it different from tree traversals:
! you can visit the same node more than once
! you can get in a cycle

What to do about it?

Graph Traversal

What makes it different from tree traversals:
! you can visit the same node more than once
! you can get in a cycle

What to do about it:
! mark the nodes

-White: unvisited
-Grey: (still being considered) on the frontier: not all
adjacent nodes have been visited yet

-Black: off the frontier: all adjacent nodes visited (not
considered anymore)

BFS: Breadth First Search

Like level traversal in trees, BFS(G,s)
explores the edges of G and locates every
node v reachable from s in a level order using
a queue.

BFS: Breadth First Search

Like level traversal in trees, BFS(G,s)
explores the edges of G and locates every
node v reachable from s in a level order using
a queue.

BFS also computes the distance: number of
edges from s to all these nodes, and the
shortest path (minimal #edges) from s to v.

BFS: Breadth First Search

Like level traversal in trees, BFS(G,s)
explores the edges of G and locates every
node v reachable from s in a level order using
a queue.

BFS also computes the distance: number of
edges from s to all these nodes, and the
shortest path (minimal #edges) from s to v.

BFS expands a frontier of discovered but not
yet visited nodes. Nodes are colored white,
grey or black. They start out undiscovered or
white.

22

Breadth First Search

BFS intuition. Explore outward from s, adding nodes
one "layer" at a time.

BFS algorithm.
! L0 = { s }.
! L1 = all neighbors of L0.
! L2 = all nodes that do not belong to L0 or L1, and

that have an edge to a node in L1.
! Li+1 = all nodes that do not belong to an earlier

layer, and that have an edge to a node in Li.

For each i, Li consists of all nodes at distance exactly
i from s. There is a path between s and t iff t
appears in some layer.

s L1 L2 L n-1

23

Breadth First Tree

BFS produces a Breadth First Tree rooted at s:
when a node v in Li+1 is discovered as a neighbor of
node u in Li we add edge (u,v) to the BF tree

Property. Let T be a BFS tree of G, and let (x, y) be
an edge of G. Then the level of x and y differ by at
most 1. WHY?

Either in the same layer (2,3)
for root 1, or in two adjacent
layers (2,4) for root 1.

24

Breadth First Search

L0

L1

L2

L3

BFS(G,s)
#d: distance, c: color, p: parent in BFS tree
forall v in V-s {c[v]=white; d[v]=¥,p[v]=nil}
c[s]=grey; d[s]=0; p[s]=nil;
Q=empty;
enque(Q,s);
while (Q != empty)

u = deque(Q);
forall v in adj(u)

if (c[v]==white)
c[v]=grey; d[v]=d[u]+1; p[v]=u;
enque(Q,v)

c[u]=black;
don’t really need grey here, why?

We don't use grey; we just test for unvisited (white) so we can
paint v black (visited) immediately.

Complexity BFS

Each node is painted white once, and is enqueued and
dequeued at most once.

Complexity BFS

Each node is painted white once, and is enqueued and
dequeued at most once.

Why?

Complexity BFS

Each node is painted white once, and is enqueued and
dequeued at most once.

Enque and deque take constant time. The adjacency
list of each node is scanned only once: when it is
dequeued.

Complexity BFS

Each node is painted white once, and is enqueued and
dequeued at most once.

Why? Once a node is not white, we don't enqueue/
dequeue it anymore.

Enque and deque take constant time. The adjacency
list of each node is scanned only once, when it is
dequeued.

Therefore time complexity for BFS is
O(|V|+|E|) or O(n+m)

30

Connected Components

Connected graph. There is a path between any pair
of nodes.

Connected component of a node s. The set of all
nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4,
5, 6, 7, 8 }.

This is one graph with three connected components.

Connected Components

Connected component of a node s. The set of all
nodes reachable from s.

Given two nodes s, and t, their connected components
are either identical or disjoint. WHY?

31

Connected Components

Connected component of a node s. The set of all
nodes reachable from s.

Given two nodes s, and t, their connected components
are either identical or disjoint.

32

Two cases – either there is a path between s and t or there isn’t.
If there is a path: take a node u in the connected component of s, and
construct a path from t to u: t to s, then s to u, so CCs = CCt
If there is no path: assume that the intersection contains a node u. Use
it to construct a path between s and t: s to u, then u to t – contradiction.

33

Connected Components

A generic algorithm for finding
connected components:

Upon termination, R is the connected component
containing s.
! BFS: explore in order of distance from s.
! DFS: explores edges from the most recently

discovered node; backtracks when reaching a
dead-end.

s

u v

R

R = {s} # the connected component of s is initially s.
while there is an edge (u,v) where u is in R and v is not in R:

add v to R

DFS: Depth First Search

Explores edges from the most recently
discovered node; backtracks when reaching a
dead-end. The algorithm below does not use
white, grey, black, but uses explored (and
implicitly unexplored). Recursive code:

BUT, how do we find cycles in a graph?
Use black, white, and grey coloring.

DFS(u):
mark u as Explored and add u to R
for each edge (u,v) :
if v is not marked Explored :

DFS(v)

DFS and cyclic graphs

When DFS visits a node for the first time it is
white. There are two ways DFS can revisit a
node:

1. DFS has already fully explored the node.
What color does it have then? Is there a
cycle then?

2. DFS is still exploring this node. What color
does it have in this case? Is there a cycle
then?

35

DFS and cyclic graphs

There are two ways DFS
can revisit a node:

1. DFS has already fully
explored the node. What
color does it have then?
Is there a cycle then?

2. DFS is still exploring
this node. What color
does it have in this case?
Is there a cycle then?

36

DFS and cyclic graphs
There are two ways DFS can revisit a node:

1. DFS has already fully explored
the node. What color does it have
then? Is there a cycle then?
No, the node is revisited
from outside.

2. DFS is still exploring this node.
What color does it have in this
case? Is there a cycle then?
Yes, the node is revisited on a
path containing the node itself.

So DFS with the white, grey, black coloring scheme detects a
cycle when a GREY node is visited

37

Cycle detection: DFS + coloring

38

When a grey (frontier) node is visited, a cycle is detected.

Recursive / node coloring version

DFS(u):
#c: color, p: parent
c[u]=grey
forall v in Adj(u):

if c[v]==white:
p[v]=u
DFS(v)

c[u]=black
The above implementation of DFS runs in O(m + n) time if
the graph is given by its adjacency list representation.
Proof:

Same as in BFS ▪

40

41

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if
the nodes can be colored red or blue such that every
edge has one red end and one blue end.

Applications.
! Scheduling: machines = red, jobs = blue.

a bipartite graph

42

Testing Bipartite-ness

Given a graph G, is it bipartite?
! Many graph problems become tractable if the

underlying graph is bipartite (independent set)
! A graph is bipartite if it is 2-colorable

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

Algorithm for testing if a graph is bipartite

q Pick a node s and color it blue
q Its neighbors must be colored red.
q Their neighbors must be colored blue.
q Proceed until the graph is colored.
q Check that there is no edge whose ends are the

same color.

43

L1 L2 L3

44

An Obstacle to Bipartite-ness

Which of these graphs is 2-colorable?

45

An Obstacle to Bipartite-ness

Lemma. If a graph G is bipartite, it cannot contain an
odd cycle.

Proof. Not possible to 2-color the odd cycle, let
alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

46

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following
holds.
(i) No edge of G joins two nodes of the same layer. G is bipartite.
(ii) An edge of G joins two nodes of the same layer. G contains an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

47

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following
holds.
(i) No edge of G joins two nodes of the same layer. G is bipartite.
(ii) An edge of G joins two nodes of the same layer. G contains an

odd-length cycle (and hence is not bipartite).
Proof. (i)
! Suppose no edge joins two nodes in the same layer.
! I.e. all edges join nodes on adjacent layers.
! Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

48

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following
holds.
(i) No edge of G joins two nodes of the same layer. G is bipartite.
(ii) An edge of G joins two nodes of the same layer. G contains an

odd-length cycle (and hence is not bipartite).

Proof. (ii)
! Suppose (x, y) is an edge with x, y in same level Lj.
! Let z = lca(x, y) = lowest common ancestor.
! Let Li be the level containing z.
! Consider the cycle containing the edge (x,y),

then path from y to z, then path from z to x.
! Its length is 1 + (j-i) + (j-i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

49

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no
odd length cycle.

5-cycle

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

50

Directed Graphs

Directed graph. G = (V, E)
! Edge (u, v) goes from node u to node v.

Example. Web graph - hyperlink points from one web
page to another.
! Search engines exploit hyperlink structure to rank

web pages by importance.

51

Graph Search

Directed reachability. Given a node s, find all nodes
reachable from s.

Web crawler. Start from web page s. Find all web
pages linked from s, either directly or indirectly.

BFS and DFS extend naturally to directed graphs.

Given a path from s to t, not guaranteed there is a
path from t to s.

52

Strong Connectivity
Def. Nodes u and v are mutually reachable if there is a path
from u to v and also a path from v to u.
Def. A graph is strongly connected if every pair of nodes is
mutually reachable.

Lemma. Let s be any node. G is strongly connected iff
every node is reachable from s, and reversely, s is reachable

from every node.

Proof. Þ Follows from definition.
Proof. Ü Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

53

Strong Connectivity: Algorithm

Theorem. Strong connectivity of a graph can be determined in
O(m + n) time.
Proof.
! Pick any node s.
! 1. Run BFS from s in G.
! 2. Run BFS from s in Grev.
! Return true iff all nodes reached in both BFS executions.
! 1: s can reach all nodes, 2: s can be reached from all nodes
! Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

DAGs and Topological Ordering

Examples: Graphs Describing Precedence
! prerequisites for a set of courses
! dependencies between programs
! dependencies between jobs
! order of putting your clothes on

Precedence constraints. Edge (vi, vj) means task vi
must occur before vj.
Topological ordering: a total ordering of the nodes
that respects the precedence relation
! Example: An ordering of CS courses

Graphs describing precedence must not contain cycles.
Why?

Graphs Describing Precedence

Batman images are from the book “Introduction to bioinformatics algorithms”

Topological Order of DAGs

DAG: Directed Acyclic Graph

Topological order: listing of nodes such that if
(a,b) is an edge, a appears before b in the list
Is a topological sort unique?

58

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

59

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Proof. (by contradiction)
! Suppose that G has a topological order v1, …, vn and that G

also has a directed cycle C.
! Let vi be the lowest-indexed node in C, and let vj be the node

just before vi; thus (vj, vi) is an edge.
! By our choice of i, we have i < j.
! On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i
! contradiction.

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

60

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

61

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no
incoming edges.

62

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming
edges.
Proof. (by contradiction)
! Suppose that G is a DAG and every node has at least one

incoming edge. Then it has a cycle and thus is not a DAG:
– Pick any node v, and begin following edges backward from v.
– Repeat. After n + 1 steps we have visited a node, say w,
twice. The sequence of nodes encountered between
successive visits is a cycle.

! Contradiction

w x u v

63

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.
Proof. (by induction on n)
! Base: true if n = 1.
! Step: Given a DAG with n > 1 nodes, find a node v with no

incoming edges. G - { v } is a DAG, since deleting v cannot create
cycles. By induction hypothesis, G - { v } has a topological
ordering. ▪

Topological Sort: Algorithm

Algorithm:

keep track of # incoming edges per node
while (nodes left) :

extract one with 0 incoming
subtract one from all its adjacent nodes

Time complexity?
Better way?

64

65

Topological Sort: Algorithm Running Time

Theorem. Algorithm can run in O(m + n) time.
Proof.
! Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of nodes with no incoming edges

! Initialization: O(m + n) via single scan through graph.
! Update: pick a node v in S

– remove v from S
– for each edge (v, w) : decrement count[w] and add
w to S if count[w] hits 0

– this is O(1) per edge ▪

