
11/15/21

Copyright 2000, Kevin Wayne 1

Week 12

Dynamic Multi-Threading

Cormen et. al., Chapter 27

Serial vs. Parallel Algorithms
Serial algorithms are suitable for running on sequential uniprocessor
computers. These sequential computers are not built anymore. We live
in the age of parallel computers, where multiple instructions are
executed at the same time. These parallel computers come in different
forms:

■ Single multi core chips. A core is a full-fledged processor. Each
core can access a single shared memory. Also called Shared Memory
Multiprocessors.

■ Single multi core chips with accelerators. An accelerator is a
special co-processor that can execute certain (simple) codes in
parallel, e.g. a vector processor that executes the same instruction
on an array of values.

■ Distributed memory multi-computers, where each processor’s
memory is private, and processors communicate via an
interconnection network.

We will concentrate on the first class: multi-core shared memory
computers.

2

11/15/21

Copyright 2000, Kevin Wayne 2

Dynamic Multithreading

Programs can specify parallelism through:

1. Nested Parallelism, where a function call is “spawned”, allowing
the caller and spawned function to run in parallel. We also call this
Task Parallelism.

2. Loop Parallelism, where the iterations of the loop can execute in
parallel.

These parallel loop iterations and tasks are executed by “virtual
processors” or threads. Exactly when a thread executes and on which
core it executes is not decided by the programmer, but by the run time
system, which coordinates, schedules and manages the parallel
computing resources. This lightens the task of writing parallel
programs, as we don’t have to worry about data partitioning (shared
memory) and task scheduling.

3

Parallel constructs

Parallel tasks are created by a spawn and at the end of the task’s
execution synchronized with the parent by a sync. Parallel tasks
naturally follow the divide-and-conquer paradigm.

Parallel loops are created using parallel and new constructs (later).

Removing spawn, sync, parallel and new from the program brings back
the original sequential code.

There is a growing number of dynamic multi threading platforms.
E.g., in cs475 we study OpenMP (open multi processing), built on top of
C, C++, or Fortran.

4

11/15/21

Copyright 2000, Kevin Wayne 3

The basics of dynamic multithreading
Fibonacci sequence:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2 n>1

Simple recursive solution:

Fib(n) :
if n<=1

return n
else
x = Fib(n-1)
y = Fib(n-2)
return x+y

4

3 2

2 1

1 0

1 0

Why do you not want to compute Fibonacci for large n this way?
How many nodes in this tree? (order of magnitude)
How would you write an efficient Fibonacci?

Run time of Fib(n)

T(n) denotes the run time of Fib(n):

T(n) = T(n-1) + T(n-2) + !(1)
the two recursive calls and
some constant time split and combine extra work

Claim: T(n) = !(Fn)

6

Proof: strong induction.
Base: all constants, OK.
Step: assume

T(m) = !(Fm) ≤ aFm-b a,b non negative constants, 0 ≤ m < n
Then: T(n) ≤ aFn-1-b + aFn-2-b + !(1) = a(Fn-1+Fn-2) – b – (b- !(1))

= aFn- b – (b-!(1)) ≤ aFn- b

In fact, we can show that T(n) = !(φn) φ = (1+Sqrt(5))/2 (CS420)

11/15/21

Copyright 2000, Kevin Wayne 4

Parallel Fibonacci
P-Fib(n):

if n<=1

return n

else

x = spawn P-Fib(n-1) // spawn

y = P-Fib(n-2) // call

sync

return x+y

spawn: the caller (parent) can compute on in parallel with the called
(child); it does not have to, but it may (up to the RTS when and
where to schedule tasks)

sync: the parent must wait for all its spawned children to have
completed, before proceeding. The sync is required to avoid
summing x+y, before x is computed

return: in addition to explicit sync-s, a return statement executes a
sync implicitly, so that the parent waits for its children to
complete

7

In a sequential call, the caller waits until the called
returns, whereas in a parallel spawn, the spawner (parent)
may execute at the same time as spawned (child), until the
spawner encounters a sync.

Why do we
sync here?

Because return x+y needs
(depends on) results of both
spawn and call

A Multithreaded execution model
The multithreaded computation can be viewed as executing a

Directed Acyclic Graph G=(V,E), called computation DAG

Example: computation DAG for P-Fib(4)

8

P-Fib(4)

P-Fib(3) P-Fib(2)

P-Fib(2) P-Fib(1) P-Fib(0)

P-Fib(1) P-Fib(0)

P-Fib(1)

Box: Procedure instance
Light: spawned
Dark: called in parent

Circle is a strand: a sequence of
non control instructions
Black: base case or code

up to spawn
Grey: call in parent
White: code after sync

Arrows: control:
spawn, call, sequence, return

Fat arrows: critical path: the
longest path through the
computation

Work: total number of strands
Span: number of strands

on a critical path

Assuming each strand takes one time unit
(total) work equals 17 time units
span equals 8 (#critical path strands)

11/15/21

Copyright 2000, Kevin Wayne 5

A Multithreaded execution model
The multithreaded computation can be viewed as executing a

Directed Acyclic Graph G=(V,E), called computation DAG,
which is embedded in the call tree.

9

P-Fib(4)

P-Fib(3) P-Fib(2)

P-Fib(2) P-Fib(1) P-Fib(0)

P-Fib(1) P-Fib(0)

P-Fib(1)

Edge (u,v): u executes before v
(u,v) indicates a dependency:
if a node (strand) has two successors,

one of them is spawned
if a strand has multiple predecessors,

they sync before execution continues
If there is a path from u to v, they execute
in series, otherwise they execute in parallel

Spawn and call edges point downward.
Horizontal (continuation) edges indicate
that the parent may keep computing while
spawn executes. Return edges point up.

Execution starts in a single initial strand
(which one?) and ends in a single final strand
(which one?)

Impact of schedule

10

6: P-F1

1: P-F3

2: P-F2 3

4: P-F1 5

7: P-F0

8

9

Unfolded DAG for PF-3

2 Processors

Schedule 1
P2 3 5 7
P1 1 2 4 6 8 9

time 1 2 3 4 5 6

Schedule 2
P2 3 6
P1 1 2 4 5 7 8 9

time 1 2 3 4 5 6 7

Idle time: number of empty slots (processor not busy) in schedule
schedule 1: 3, schedule 2: 5

11/15/21

Copyright 2000, Kevin Wayne 6

Performance Measures

Work: the total time to execute the program sequentially. Assuming 1
time unit per strand, this is the number of nodes (circles) in the DAG.

Span: longest time to execute the strands along any path in the tree,
i.e., the number of nodes on the critical path of the DAG.

The run time of the program depends also on schedule and number of
processors.

Intuitive interpretation of work and span:
work models sequential execution time
span models fully parallel execution time

11

Performance Measures: time
Work: the total time to execute the program sequentially. Assuming 1 time
unit per strand, this is the number of nodes in the DAG.
Span: longest path length of the DAG. This is the fully parallel execution
time (if there are always enough processors to execute a task immediately)

T1: the time to execute the program with 1 processor (T1=work)
TP: the time to execute the program with P processors

As we have seen, different schedules can sometimes take different time, but
we always assume greedy scheduling: if there are (≥1) strands ready and a
processor is available, a strand will be executed. (Which strand depends on
the scheduler.)

Simplifying assumption: We are assuming no time cost for communication
between the strands or memory accesses. We call this model of computation
ideal. WHY IDEAL?

12

Because we assume no time cost for
memory access or communication between
the processors executing the strands

11/15/21

Copyright 2000, Kevin Wayne 7

Work Law and Span Law

Work Law:
in one step P processors can do at most P units of work:

TP ≥ T1/P

Span Law:
T∞: the time to execute the program with unlimited
#processors (T∞ = span) is less or equal the time to
execute the program with a
fixed #processors P

T∞ ≤ TP or TP ≥ T∞

13

Performance Measures: parallelism and speedup

SP: speedup with P processors: T1 / TP.

(Average) Parallelism: T1 / T∞ (sometimes called Π (pi)):
■ average amount of work that can be done per time step

With P processors you can only go P times faster than with 1
processor:

SP ≤ P

linear speedup: SP = f P (0 < f ≤ 1)

ideal speedup: f=1 or SP = P
(no idle time, all processors busy all the time)

When P > Π there will be idle time and hence non-ideal speedup

14

11/15/21

Copyright 2000, Kevin Wayne 8

Exercise
Fill in

T1:
T∞:
Π :

Is there idle time for:
P=1 P=2 P=3 ?
P3

P2

P1

Create a schedule for P=3
Time/speedup p=3
T3: S3:

Is T4 < T3 ? explain

15

6: P-F1

1: P-F3

2: P-F2 3

4: P-F1 5

7: P-F0

8

9

Unfolded DAG for PF-3

Exercise
T1: 9
T∞: 6 (nodes on critical path: 1,2,5,7,8,9)
ᴨ: 9/6 = 1.5

Is there idle time for:
P=1 P=2 P=3 ?
P=3: YES
P=2: YES
P=1: NO (never for P1)

Create a schedule for P=3
6

3 5
1 2 4 7 8 9
T3: 6 S3: 9/6=1.5
Is T4 < T3 ? NO The fourth processor is
unnecessary. Never are there more than 3
parallel strands.

16

6: P-F1

1: P-F3

2: P-F2 3

4: P-F1 5

7: P-F0

8

9

Unfolded DAG for PF-3

11/15/21

Copyright 2000, Kevin Wayne 9

Bound on TP

We consider greedy schedulers only.

If there are at least P strands available in a time step, all
processors execute, and we call this a complete step.

If there are fewer than P strands available in a time step,
some processors will be idle, and we call that an incomplete
step.

From the work law (TP ≥ T1/P)we know that at best TP =T1/P
From the span law (TP ≥ T∞) we know that at best TP = T∞

17

Theorem: bound on TP

Theorem: TP ≤ T1/P + T∞
Proof:
- There can be at most ⌊T1/P⌋ complete steps,

otherwise there would be more than T1 work.
- There can be at most T∞ (critical path length)

incomplete steps. This happens when all steps are
incomplete in which case in every step the remaining
critical path length is decreased.

Steps are either complete or incomplete, therefore:

TP ≤ T1/P + T∞

QED

18

11/15/21

Copyright 2000, Kevin Wayne 10

Corollary of theorem TP ≤ T1/P + T∞

19

TP of any computation scheduled by a greedy scheduler is within a
factor of 2 of optimal schedule for p processors, no matter which
greedy schedule

Proof: Let T*P be the run time of an optimal schedule
Work law: T*p ≥ T1/P Span law: T*P ≥ T∞

therefore T*P ≥ max(T1/P ,T∞)

For any P processor computation we have the theorem:
TP ≤ T1/P + T∞

≤ 2 max(T1/P ,T∞)
≤ 2 T*P

QED

In other words: the scheduling algorithm has a low impact on the
performance.

Exercise

Use the schedule for P=3 from the previous exercise.
- Determine #incomplete steps, #complete steps

- Determine T1/P , T∞ , TP

- Verify the theorem for this case

20

6

1

2 3

4 5

7

8

9

11/15/21

Copyright 2000, Kevin Wayne 11

Exercise

Use the schedule for P=3 from the previous exercise.
- #incomplete steps: 5, #complete steps: 1

- T1/P: 9/3=3 , T∞: 6, T3: 6

- Verify the theorem for this case
T3 = 6
T∞ = 6
Theorem TP ≤ T1/P + T∞

T3 = 6 <= 3 + 6 = 9

21

6

1

2 3

4 5

7

8

9

Composing computations

We can compose two computations A and
B in series or in parallel.

In series: A is followed by B

Work: T1(A∪B) = T1(A) + T1(B)
Span: T∞(A∪B) = T∞(A) + T∞(B)

In parallel: A and B execute in parallel

Work: T1(A∪B) = T1(A) + T1(B)
Span: T∞(A∪B) = max(T∞(A),T∞(B))

22

A B

A

B

11/15/21

Copyright 2000, Kevin Wayne 12

Critique of the ideal execution model

Why are the previous observations highly (unrealistically) optimistic?

23

1. Communication between strands is NOT free of time cost.
Determining that a strand is ready for execution, and starting it on an
available processor, takes time.

2. Accessing memory is not free; it takes A LOT OF time, as compared to
executing a strand of arithmetic instructions. In modern computers
instruction execution takes 1 clock cycle, whereas memory accesses
take many processor clock cycles; we call this phenomenon the

MEMORY WALL.

This is why modern computers have a complex cache architecture.

Parallel (Recursive) Fibonacci
P_Fib(n):

if n<=1

return n

else

x = spawn P_Fib(n-1) // spawn

y = P_Fib(n-2) // call

sync

return x+y

-Work (slide 6): execution time of Fib exponential: !(φn)
-Span: spawn P_Fib(n-1) and call P_Fib(n-2) can run in parallel:

T∞(n) = max(T∞(n-1),T∞(n-2)) + !(1) = T∞(n-1) + !(1) is !(n)
- Parallelism: ᴨ = T1(n)/ T∞(n) = !(φn / n) which grows fast, so near

perfect speedup can be achieved.
BUT: WHAT IS THE PROBLEM?

24

This is the very inefficient recursive implementation!
It is easy to write an inefficient highly parallel program J

11/15/21

Copyright 2000, Kevin Wayne 13

Parallel Loops
The parallel keyword before a for loop indicates that all the iterations of
the for loop can execute in parallel.
It is legal to parallelize a for loop if the iterations are independent of each
other, i.e., an iteration does not use values computed in previous iterations.
Example of legal parallelization:

for i in 0 to n-1: C[i] = A[i]+B[i]
can be made

parallel for i in 0 .. n-1: C[i] = A[i]+B[i]
Example of illegal parallelization:

for i in 0 to n-1: A[i] = A[i-1]+B[i]
Cannot be made parallel
Here iteration i uses a value computed in iteration i-1. We call this:

iteration i is dependent on iteration i-1.
So iteration i-1 must be executed before iteration i. If we don’t do this, and
insist on executing the iterations in parallel we will create a data race and
(see pp 787-790 of the text)

25

Example: matrix vector product Yi = ∑"#$% &'"(" for i = 1..n

Each Yi can be computed in parallel by an independent a loop iteration i:

Mat-Vec(A,x):
n = A.rows
y float[n]
parallel for i = 1 to n
y[i] = 0
for each row i compute the in-product(row i, X)
parallel for i = 1 to n # parallel for rows of A

for new j = 1 to n # sequential for j
y[i] = y[i] + a[i,j] * x[j]

return y

Because all inner j loops update j, j cannot be shared, Thus, each spawned
iteration needs a private copy of j. This is expressed using the new
keyword. Parallel for is often called ”forall”

26

11/15/21

Copyright 2000, Kevin Wayne 14

Mat-Vec Performance
q If p, the number of processors is very large (e.g., data center scale), a

parallel for can be compiled into a divide and conquer tree of spawned
processes much like merge sort (see below). But in practice, even if p is
very large, each processor can independently (i.e., in constant time).
determine “its chunk.”

q The textbook analysis (pages 785-787) update:
q Though it is possible to always compile parallel for using spawn-sync

this is unnecessarily inefficient
q parallel for is actually a more powerful and additional parallelization

construct (see exercises in PQ9 DMT)

q Work: each internal node [lo, up] does constant spawn, compute, call
work. There are n-1 of these nodes, so set up work is !(n). Each of the
n leaves does !(n) work. Hence the work is !(n2)

q Span: All the computation is in the (sequential) leaves. The leaves run
in parallel and take !(n) time. Hence the span is !(n).

27

Recursive SCAN
SCAN (also called “Prefix sum”): given an array A, compute an array of X,
where the i-th element of X is the sum of the first i elements of A.
Divide into halves; (recursively) compute prefix sums and add the sum of
the first half to each element of the second half.

Scan(lo, hi, A):
if lo = hi return A[lo]
else
mid = (hi-lo)/2
X[1:mid] = Scan(lo, mid)
X[mid+1:hi] = Scan(mid+1, hi)
X[mid+1:hi] = X[mid]+X[mid+1:hi] #for loop

return X

Work complexity: W(n) = 2* W(n/2) + n/2 is !(n lg n) (Master Theorem).
More than standard !(n) iterative scan:

X[1] = A[1]
for i = 2 to n: X[i] = X[i-1]+A[i]

But the iterative scan has a dependency, so cannot be parallelized.
28

11/15/21

Copyright 2000, Kevin Wayne 15

Parallelized recursive Scan
P_Scan(lo, hi, A):
if lo = hi X[lo]= A[lo]
else
mid = (hi-lo)/2
X[1:mid] = spawn P_scan(lo, mid, A)
X[mid+1:hi] = P_scan(mid+1, hi, A)
sync
X[mid+1:hi] = X[mid] + X[mid+1:hi]

q Use parallel spawn-sync across recursion, and
parallel for to update X[mid+1:hi]

q Work: !(n lg n)
q Span: !(lg n)

We can scan n numbers in !(lg n) time with !(n) processors

29

This can be executed in parallel:
all iterations are independent!!

Even better parallelization

qSee https://en.wikipedia.org/wiki/Prefix_sum

qTree based (work out on excel spreadsheet)

qOne pass up the tree to compute a reduction (and also
save all partial sums contributing to that)

qSecond pass down the tree to update/repair the
elements with the prefix results of everything to the
left of the node

qWork is reduced to !(n)

qSpan: !(lg n)

We can scan n numbers in !(lg n) time with !(n) processors
30

https://en.wikipedia.org/wiki/Prefix_sum

11/15/21

Copyright 2000, Kevin Wayne 16

Back to Fibonacci
q Problem:

q Compute an array of the first n Fibonacci
numbers

q Computing (only) the nth one is a special case of
this problem.

q Lower bound:
q Is it !(n), the size of the output?
q No, processors can write outputs in parallel

q Recall the memo-Fib: in each iteration, update one
value using the previous and pre-previous

31

F[0] = F[1] = 1;
for i in range(2:n)

F[i] = F[i-1] + F[i-2]
F[i-1] = F[i-1] //redundant copy

How to reduce the Fib to a scan?
q Draw from the memory efficient memo-Fib: copy

q new to previous
q previous to pre-previous

q Maintain a 2-element vector
q Use a matrix notation, to express F[i] and F[i-1] in

terms of previous vector F[i-1] and F[i-2]:

F[i] = 1 * F[i-1] + 1 * F[i-2]
F[i-1] = 1 * F[i-1] + 0 * F[i-2]

!"
!"#$ = 1 1

1 0
!"#$
!"#(

= 1 1
1 0 ∗ 1 1

1 0
!"#(
!"#*

= 1 1
1 0 ∗ ⋯∗ 1 1

1 0
!$
!,

Key idea: reduction (pun intended)

32

11/15/21

Copyright 2000, Kevin Wayne 17

q Parallel algorithm does more work (!(lg n) factor)
q Uses !(n) processors
q Achieves faster time (!(lg n) time as opposed to
!(n) so speedup is !(n/lg n)

q Can we do better?
q Yes, see in CS475/CS575 (Brent’s theorem)

q In practice best parallel algorithm may be “too
fast” because
q Both p and n grow asymptotically
q But p grows much slower than n

q Chunking algorithm
q Each process has a chunk of "# elements
q Sequentially reduces its chunk
q Processors cooperate to parallel scan result
q Scan local array sequentially
q Factor of two extra work
q Work Law limit: ideal speedup possible

Main question: is extra work worth it?

33

Parallelize something that’s inherently sequential!!!

It is representative of problems in signal/image
processing (recursive filtering/convolution)

The sequential algorithm/program uses the standard
incremental approach with (O(n)) work

The parallel scan breaks the sequential dependence,
of the sequential span. It has a shorter span, but it
performs more work

The parallel and sequential algorithms can be
combined to achieve an efficient parallel
implementation (CS475: Brent’s theorem)

q top of the call tree parallel, bottom sequential.

Is Scan an important problem?

34

