
10/27/21

Copyright 2000, Kevin Wayne 1

Making Change

2

Making Change

Goal. Given currency coin denominations, e.g., {100, 25, 10, 5, 1} devise
a method to pay an integer amount using the fewest coins.

Example: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value
that does not take us past the amount to be paid.

Example:
$2.89 = 289¢.

25 5 1 1 1 1

100, 100, 25, 25, 25, 10, 1, 1, 1, 1

10/27/21

Copyright 2000, Kevin Wayne 2

3

Greedy Algorithm

Cashier's algorithm. Use the maximal number of the
largest denomination coin
x – amount to be changed
Sort coins denominations by value: c1 < c2 < … < cn.
S ¬ empty
while (x > 0) {

let k be largest integer such that ck £ x
if (k == 0) # all ck > x

return "no solution found"
x ¬ x - ck
append(S,k)

}
return S

coins selected

Does this Greedy algorithm always work?

4

Greedy doesn’t always work

1. Greedy fails changing 30 optimally with coin set
{25, 10, 1} as it produces [25,1,1,1,1,1] instead of
[10,10,10]

2. Greedy fails changing 30 at all with coin set
{25, 10} even though there is a solution: [10,10,10]

3. But the Greedy algorithm works for US coin set
Proof: number theory (canonical coin systems)

10/27/21

Copyright 2000, Kevin Wayne 3

Different problem: number of ways to pay
Given a sorted coin set coins = {c0, c1, ..., cd-1} c0 the smallest coin
value, and cd-1 the largest coin value, and an amount M

how many different ways can M be paid?

5

One possible recursive either / or solution: go backwards through
coins and choose to use the largest remaining coin or not

mkCh(n, c):
n: amount still to be paid
c: index of coins value currently considered
Base:

if c == 0, how many ways? (is there always a way ?)
Step:

if c>0
if largest coin cannot be used: consider coinc-1
else: # it can be used

either use one coinc and keep considering coinc
or don’t use coinc and thus consider coinc-1

Make change vs. knapsack

Recurrence:

ways(amount, i) =
1. Base case?
2. If amount < coin[i]: ways(i-1, amount)
3. Else: ways(amount-coin[i],i) + ways(amount, i-1)

Making change is very similar to knapsack, but:

1. We take the sum, not the maximum, of the two
options.

2. We must use the same coin value a number of
times. How this is reflected in the recurrence?

6

10/27/21

Copyright 2000, Kevin Wayne 4

Example of the recursive solution

29,3

coins = [1,5,10,25] M = 29

4,3
use

29,2

don’t use
Quarters

Dimes

Nickels

Pennies

Complete this call tree

19,1

4,2

4,1

4,0

19,2 9,2

9,1

9,0

4,1

4,0

14,1 . . .

.

. . .

8

Making Change Dynamic Programming

Go through the state space bottom-up: i=0 to n-1
■ select coin type

– first 1 coin type, then 1&2,, finally all coin types
– what does the first column look like?

■ use solutions of smaller sub-problems to compute solutions of
larger ones by storing previous values. Which values do you
need to preserve?

0 1 2 … n-1

In the recursive solution (DC) there are
2 (recursive) sub-problems. In the dynamic
programming solution there are 2 reads:

don’t use current coin

use current coin

10/27/21

Copyright 2000, Kevin Wayne 5

Programming Assignment

1. Write a recursive mkChange function based on the either or choices
from slide 6, then turn it into a Dynamic Programming function.

■ Do you need a 2 D table here?

2. Determine the performance of the two algorithms. Later, in a
written assignment, you will plot your data, and infer O complexity:
■ Recursive: count number of calls
■ Dynamic programming: count number of table reads

9

