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Making Change

Goal.  Given currency coin denominations, e.g., {100, 25, 10, 5, 1} devise 
a method to pay an integer amount using the fewest coins.

Example:  34¢.

Cashier's algorithm.  At each iteration, add coin of the largest value 
that does not take us past the amount to be paid.

Example:  
$2.89 = 289¢.

25      5      1     1     1     1

100,    100,    25,  25, 25,  10,     1, 1, 1, 1
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Greedy Algorithm

Cashier's algorithm. Use the maximal number of the 
largest denomination coin
x – amount to be changed
Sort coins denominations by value: c1 < c2 < … < cn.
S ¬ empty
while (x > 0) {

let k be largest integer such that ck £ x
if (k == 0) # all ck > x

return "no solution found"
x ¬ x - ck
append(S,k)

}
return S

coins selected 

Does this Greedy algorithm always work? 
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Greedy doesn’t always work

1. Greedy fails changing 30 optimally with coin set 
{25, 10, 1} as it produces [25,1,1,1,1,1] instead of  
[10,10,10]

2. Greedy fails changing 30 at all with coin set 
{25, 10} even though there is a solution: [10,10,10] 

3. But the Greedy algorithm works for US coin set
Proof: number theory (canonical coin systems)
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Different problem: number of ways to pay 
Given a sorted coin set coins  = {c0, c1, ..., cd-1} c0 the smallest coin 
value, and cd-1 the largest coin value, and an amount M

how many different ways can M be paid?  
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One possible recursive either / or solution: go backwards through 
coins and choose to use the largest remaining coin or not  

mkCh(n, c):
# n: amount still to be paid
# c: index of coins value currently considered
Base:

if c == 0, how many ways? (is there always a way ?)
Step:

if c>0
if largest coin cannot be used:  consider coinc-1 
else:  # it can be used

either use one coinc and  keep considering coinc
or don’t use coinc and thus consider coinc-1 

Make change vs. knapsack

Recurrence:

ways(amount, i)  =
1. Base case?
2. If amount < coin[i]:  ways(i-1, amount)
3. Else: ways(amount-coin[i],i) + ways(amount, i-1)

Making change is very similar to knapsack, but:

1. We take the sum, not the maximum, of the two 
options.

2. We must use the same coin value a number of 
times. How this is reflected in the recurrence?
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Example of the recursive solution

29,3

coins = [1,5,10,25] M = 29

4,3
use

29,2

don’t use
Quarters

Dimes

Nickels

Pennies

Complete this call tree 

19,1

4,2

4,1

4,0

19,2 9,2

9,1

9,0

4,1

4,0

14,1 . . . 

. . . . . . . . . 

. . . 
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Making Change Dynamic Programming

Go through the state space bottom-up: i=0 to n-1
■ select coin type

– first 1 coin type,  then 1&2, ......, finally all coin types
– what does the first column look like? 

■ use solutions of smaller sub-problems to compute solutions of 
larger ones by storing previous values. Which values do you 
need to preserve?

0       1       2         …         n-1    

In the recursive solution (DC)  there are 
2 (recursive) sub-problems. In the dynamic 
programming solution there are 2 reads:

don’t use current coin

use current coin
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Programming Assignment

1. Write a recursive mkChange function based on the either or choices 
from slide 6, then turn it into a Dynamic Programming function.  

■ Do you need a 2 D table here?

2.  Determine the performance of the two algorithms. Later, in a 
written assignment, you will plot your data, and infer O complexity:
■ Recursive: count number of calls
■ Dynamic programming: count number of table reads
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