Shortest Paths in graphs
with arbitrary edge weights

Cormen et. al. 24.1

Shortest Path Problem

Shortest path problem. Given a directed graph 6 = (V, E), with
edge weights c,,, find shortest path from node s to node t.
Here we consider single target shortest paths problems and
this time we allow zero and negative edge weights.

15

3
-8
20
7

18
0 11
16
44

Copyright 2000, Kevin Wayne

10/27/21

10/27/21

Shortest Paths: Dijkstra fails for negative edges

Dijkstra SSSP can fail with negative edges. Shortest path s to
tisnots >t (length1)

~ON

2 3

<
~o

1

Shortest paths tfotiss >u->v >t (length0)

Greedy approach does NOT work here.

Shortest Paths: Failed Attempt

Re-weighting: what if we add a large enough value to each edge weight
so all weights>0?

Re-weighting. Adding a constant to every edge weight fails, as the
shortest path does not need to have the minimum number of edges. x

Copyright 2000, Kevin Wayne 2

10/27/21

Negative Cost Cycles

Negative cost cycle. /?
-6

Observation. If some path from s to t contains a negative cost
cycle, there does not exist a shortest s-t path; therefore we
consider only graphs without negative cycles

c(W)<0

If there is no negative cycle the shortest path is simple (no
nodes repeated).

What about O sum cycles? We can also ignore those, as they

do not change the path length.

Bellman Ford SDSP

Goal: SDSP, single destination shortest path
Determine the shortest paths of all nodes to target node t

Observation: as we consider only graphs without negative cycles,
and zero sum cycles do not add to the path length, we can ignore
cycles in our algorithm altogether, searching for simple shortest
paths.

Therefore, a shortest path does not repeat any node. Hence,
any shortest path has at most n-1 = |V|-1 edges.

Objective: BF(G,s,t): for all nodes s and destination t, find the
shortest simple path from s to t

Copyright 2000, Kevin Wayne 3

= Case 1: path uses at most i-1 edges.
- OPT(i, v) = OPT(i-1, v)
= Case 2: path uses at most i edges.

edges

0if v=t, otherwise oo
OPT(i,v) =

(vwWw)EE

2

M7= o,
v—?be— 6 == =—p t
N, —-4

find the minimum path length.

A Dynamic Programming Approach

OPT(i, v) = length of shortest v-t path using at most i edges. We want to
create a recurrence, i.e. express OPT(i,v) in some Opt(jw) j<i

- use some edge (v,w), and then the best w-t path using at most i-1

if i=0

min{ OPT(i-1,v), min { OPT(i-1, w)+c,, } } otherwise

What is the length of the
optimal s-t path?

OPT(n-1,s), n=1V|

Notice: we prefix an edge to the paths we have already computed, and

Bellman Ford

\"
+
a
b
©
d
e
BF(G,s,1)
n=|V|

array M[0..n-1,V]
M[0,t]=-0 M[O,v]=o forall v!I=t
fori=1ton-1

return M[n-1,s]

foreach node v
foreach edge (v, w) € E
M[i,v] < min(M[i-1,v],
M[i-1,w]+Cyy)

compute M[i,v] using the recurrence

Copyright 2000, Kevin Wayne

10/27/21

foreach node v
foreach edge (v, w) € E
M[i,v] ¢« min(M[i-1,v],
M[i-1,w]+cCww)

Bellman Ford

wio (1 |2 (3 |4 |5
+ (0 |O
a | [-3
b | |
c | |3
d [~ |4
e | |2

i=1: find shortest path with <=1 edge
M[1,t]=0 (Zedge (tw))
M[1,a]=min(ee ,M[0,t]+(-3))= -3 (via b: =)
M[1,bl=min(M[O,b]= e,
via d: M[0,dJ+(-1)=00-1= oo,
via e: M[0,e]+(-2)=00-2= o
M[1,c]=min(ee ,M[0,t]+(3))= 3 (via b:)
M[1,d]=min(ee,M[0,t]+(4))= 4
M[1,eJ=min(e,M[0,11+(2))= 2 (via c: =)

foreach node v
foreach edge (v, w) € E
M[i,v] <« min(M[i-1,v],
M[i-1,w]+Cww)

Bellman Ford

Vv

+ |0 |0 |O
a o (-3 [-3
b o | [0
c o |3 3
d o |4 |3
e o 2 0

i=2: find shortest path with <=2 edges
M[2,t]=0 (Zedge (tw))
M[2,a]=min(-3,M[1,1]+(-3))= -3 (via b: =)
M[2,b]=0 (bet:0, bdt:3)
M[2,cl=min(3,M[1,1]+(3))= 3 (via b: =)
M[2,d]=min(4,M[1,a]+(6))= 3

M[2 eJ=min(2,M[1,c]+(-3))= O

Copyright 2000, Kevin Wayne

10/27/21

10/27/21

Bellman Ford
Wilo [1 [2 [3 [4 [5
+ o o [o o [o |o
a |o |3 [-3 [-4 |-6 |-6
b |w | |0 |-2 |-2 |-2
c | |3 [3 [3 [3 |3
d |- |4 [3 [3 [2 o
e |= |2 [0 |o [0 o

For each column all edges are inspected:
O(nm) time, O(n?) space. n=|V|, m=|E|

Practical Improvements

Space improvements.

» Since we only refer to the previous column, we can make a
space improvement: instead of keeping the whole table we
keep previous and current column. At the end of a sweep
previous becomes current, and current gets updated in the
hext sweep.

« We can even use only ONE column, and update nodes using the
latest value. This will sometimes get us an update one sweep
earlier. Now we only need to maintain M[v] = length shortest
v-1 path that we have found so far. Update is now:

M[v] « min { M[v], M[w] + cu, }

» The role of i is only as a counter

» Space complexity is how O(n)

Copyright 2000, Kevin Wayne 6

10/27/21

Bellman-Ford: Efficient Implementation

// Uses only knowledge of neighboring nodes.
Shortest-Path (G, s, t) {
foreach node v € V:
M[v] & ©
successor[v] <« None
M[t] = O
for i =1 to n-1:
foreach node v € V
foreach node w such that (v, w) € E:
if (M[v] < M[w] + cu,):
M[v] < M[w] + c.,
successor[v] « w
if no M[w] value changed in iteration i, stop.

Detecting Negative Cycles

Bellman-Ford can be used to detect negative cycles by running it
one more iteration.

Lemma. If OPT(nyv) = OPT(n-1,v) for all v, then there is no
negative cycle on a path fo t.

because if there is a negative cycle, we can keep bringing
OPT(i,v) down

Lemma. If OPT(n,v) < OPT(n-1,v) for some node v, then there is
a negative cycle on a path to t.

because, as argued before, without negative cycles the
optimum path length has at most n-1 edges

Copyright 2000, Kevin Wayne 7

10/27/21

Detecting Negative Cycles

Theorem. Can detect negative cost cycle in O(mn) time.
» Add new node t and connect all nodes to t with O-cost edge.
» Check if OPT(n, v) = OPT(n-1, v) for target node t.

- if so, then there are no negative cycles

- if not, then there is a negative cycle

Do Bellman Ford for Negative cycles

Copyright 2000, Kevin Wayne 8

10/27/21

Do Bellman Ford for Negative cycles

+ 0 o0 o0 0 0 0

a = 0 0 0

b « 0 0 0 -1bedbt -1

c =« 0 0 2cdbt -2 -2

d = 0 -3dbt -3 -3 -4 dbcdbt

Copyright 2000, Kevin Wayne 9

