10/10/21

Divide and Conquer: Counting Inversions

Rank Analysis

= Collaborative filtering
- matches your preference (books, music, movies,
restaurants) with that of others
- finds people with similar tastes
- recommends new things to you based on purchases
of these people

« The basis of collaborative filtering:
compare the similarity of two rankings

Copyright 2000, Kevin Wayne 1



10/10/21

What's similar?

Given numbers 1 o n (the things) rank these
according to your preference

» You get some permutation of 1..n

«» Compare to someone else's permutation

Extreme similarity
. somebody else's ranking is exactly the same

Extreme dissimilarity
. somebody else's ranking is exactly the opposite

In the middle:

« count the number of out of place rankings

Simplify it

Count the number of inversions of a ranking
= "1, P2, ... n

«» count the number of out of order pairs
° I<J r'i>r‘J~

.eqg 21435 2inversions: (2,1) (4,3)

Why is this synonymous with comparing two different
rankings?

Because we can re-number the things, such that one of
the rankings (e.g. my ranking) becomes 1,2,...n

my ranking: 1,2,..5 your ranking 2,1,4,3,5
your #1is my #2, your #2 is my #1
your #3 is my #4, your #4 is my #3

Copyright 2000, Kevin Wayne 2



Visualizing inversions

X

zero inversions 1 2 3 4 5

Visualizing inversions

how many? 3 2 1 4 5

1 2 3 4 5

>< ‘ ‘ enumerate them

3 31)(B2)12)

7: (5,2)(5,3),(5.1)(54)
140312

all lines crossing!

Careful: don't count inversions twice!

Copyright 2000, Kevin Wayne

10/10/21



Sort

Does Bubble sort count inversions?
Bubble sort is O(nh?)

Doiton: 42351 andsee what happens
4 2 3 5 1

Do bubble sort, show each swap, count inversions

4e—p? 3 5 1 2 4e—»3 5 1

1 2 3 4 5 1 2 3 4
2 3«—=>1 4 5 2«1 3 4 5
<S4 N

1 2 3 4 5

every swap takes out 1 inversion, and thus 1 line crossing

Copyright 2000, Kevin Wayne

10/10/21



10/10/21

Can we do better?

Notice: there are potentially n*(n-1)/2 inversions. WHY?
Reverse order, all pairs are out of orders

Bubble sort counts each individual swap = inversion.To do
better we must not count each individual inversion.

Think of merge sort

= in merge sort we do not swap consecutive elements that are out
of order as in bubble sort, we make larger distance swaps

= if we can merge sort and keep track of the number of inversions
we may get an O(n log n) algorithm

» Key observation: when an element from right is merged in, it
"jumps” over all remaining elements of left !l

Eg: [42351]

sort [4 2 3 51]

= sort LEFT: [42 3]
- sort left: [42] > [2 4]:1 inversion
- sort right: [3]
- merge(left,right) > [23 4] 1inversion (3 jumps over 4)

= sort RIGHT: [61] > [15] 1inversion

» merge(LEFTRIGHT) >[12 3 4 5]
3 inversions (1 jumps over 2,3 & 4)

Total inversions: 1+1+1+3=6 (go check the visualization)

Copyright 2000, Kevin Wayne 5



10/10/21

The algorithm

While merging in merge sort keep track of the
number of ‘inversions.

When mergi g an element from left: no
inversions ad

When merging an element from right: how
many inversions added?

merge result

As many elements as are remaining in left,
because the element from the right jumps over
all the remaining elements from left

Counting Inversions: Algorithm

count inversions (list)
if list has one element
return 0
divide list into two halves A and B
r, = count_inversions (A)
rz = count_inversions (B)
r, = merge-and-count (A, B, list)
return r, + rz + r,

merge-and-count(L, R, list)

count =0
while L and R not empty:

put smallest of Li and Rj in list

if Rj smallest

add number of elements remaining in L to count

if L or R empty:

append the other one to list
return count

Copyright 2000, Kevin Wayne 6



10/10/21

Running time

Just like merge sort, the sort and count algorithm
running time satisfies:
T(nN)=2T(n/2)+cn

Running time is therefore O(n log n)

Copyright 2000, Kevin Wayne 7



