
8/31/21

1

Sanjay Rajopadhye
Colorado State University

2

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Charles Babbage (1864) Analytic Engine (schematic)

8/31/21

2

n Algorithm time complexity

n Plotting data and the function clubs

n Digression: line of sight algorithm

n A survey of common running times

3

4

8/31/21

3

n How do we measure the complexity (time, space
requirements) of an algorithm?

n As a function of its input size (an integer, n)
denoting:

n Number of inputs (e.g., sorting)
n Number of bits to represent the input (e.g., primality)
n Sometimes multiple parameters, e.g., knapsack

§ Number of objects, n
§ Knapsack capacity, C

We want to determine the running time as a
function of problem sizes, and analyze them
asymptotically

5

n Seconds/nano-seconds?

n No, too specific & machine dependent

n Number of instructions executed?

n No, still too specific & machine dependent

n # of code fragments that take constant time?

n Yes

n What kind of fragments/instructions?

n Arithmetic operations,
memory accesses,
finite combinations of these

6

8/31/21

4

n Bits?

n Too detailed, but sometimes necessary (e.g.,
knapsack capacity)

n Integers?

n Nicer, but dangerous – we can code a whole
program in a single arbitrary sized integer, so we
have to be careful about the size. Better to use
machine words
i.e, fixed size (e.g., 64, collections of bits)

7

n A bound on the maximum possible running time of the
algorithm of inputs of size n
n Usually captures the notion, but may be an overestimate

n Average case
n More accurate but difficult – need to describe what is the

range of inputs, and what is the distribution, statistical
analysis. Let I be the set of inputs, and Pi and Ci be the
probability and computation time of input i

!
"∈$

%"&"

n Often a constant factor of worst case time

Same considerations for space and other measures.

8

8/31/21

5

9

n For many problems, there is a natural, but likely
naïve, brute force search algorithm that checks
every possible solution
n Enumerating such solutions is usually an exponential

function of n (recall counting from CS220).
n Hence naïve

n Definition: an algorithm is said to be polynomial
time if there exist positive constants c, and d, such
that on any input of size n, the running time is
bounded by c nd

What about an algorithm whose running time is c n lg n?

10

8/31/21

6

(Why) is the distinction important?
n One the one hand, a polynomial function like

6.03 �1023 n20 is polynomial, it is too large in practice
(e.g., for n=10)

n On the other hand, some algorithm whose worst case
execution time is exponential behave much better in
practice because he worst-case instances are (seem to be)
rare
n Simplex method for solving linear programming

So why?
n In practice, the polynomials have a low degree and

coefficients
n The difference between the polynomial-exponential

barrier reveals interesting and crucial structure of the
problem

11

n We are building mathematical functions that model the execution time
(or other properties) of programs and algorithms.

n Need a mechanism to compare them.
n How do we compare numbers? Using the relations: <,>,≤, and ≥
n Partial/total orders

n The Big-Oh, Big-Omega and Big-Theta notation (introduced in CS 220) is
such an order relation.

Here, & ⋖ (means that f grows slower than g (and also that g grows
faster than f). We may also use (⋗ &. So the following claims mean the
same thing
n &(+) ⋖ ((+)
n (⋗ &
n & = .(()
n ((+) = Ω(&(+))

n Often, one of the functions is our (complicated) model 0(+) and the
other is a simpler function (e.g., a monomial)

12

8/31/21

7

13

F(n) is O(G(n))

F(n) is W(H(n))

if G(n) = c.H(n)
then F(n) is Q(G(n))

These measures were
introduced in CS220

G(n)

F(n)

H(n)

A function !(#) is %(&(#)) if there exist constants ' >
0 and #* > 0 such that

for all # ³ #0 ∶ !(#) £ ' &(#)
n Example: ! # = 32#2 + 16# + 32.

n !(#) is %(#2)
n ALSO TRUE:

n !(#) is % #3
n ! # is% 2#

n Many possible upper bounds for one function!
We always look for the best (lowest) upper
bound, but it is not always easy to establish

14

8/31/21

8

n Transitivity

n ! ⋖ # and # ⋖ ℎ implies ! ⋖ ℎ

n Additivity

n ! ⋖ ℎ and # ⋖ ℎ implies ! + # ⋖ ℎ

n Multiplication by a constant

n ! ⋖ # implies &×! ⋖ # (and of course ! ⋖ &×# holds
by definition

15

Although Big-Oh and Big-Omega are equivalent, a
special need arises when our model !(#) is quantified
over all algorithms to solve the given problem
n Example: consider the claim that any comparison based

algorithm must make at least % × # log # comparisons,
for some constant, %.We say that comparison based
sorting is lower bounded by # lg #, i.e., that
! # is Ω(# lg #) and we often reserve the Ω
notation for this.

n Problems have lower bounds
n A common lower bound is the size of the input itself (any

algorithm to solve the problem must read all the inputs)
n Sometimes we can prove better/tighter lower bounds (e.g.,

sorting above and searching is structured data (CS 420)

16

8/31/21

9

n If ! " is Ω(%("))and ! " is also '(%(")) we

have a tight bound, and we write that ! " is
Θ(%(")).

n It means that we have closed the problem,
since the algorithm that we have attains the
lower bound on the problem

17

Sorting is a closed problem
n It has a lower bound of ! log !. We say that sorting

is Ω(! log !)
n There are many sorting algorithms whose

execution time is ((! log !) (see how we use big-Oh
to talk about an algorithm)

Matrix multiplication is an open problem
n It is Ω(!)). Why?

n The standard algorithm is (!*
n Another well known algorithm is (!).*,- and further

improvements reduce the polynomial degree even
further

See how the polynomial degree does not have to be
integer

18

8/31/21

10

19

n In empirical CS (HPC, performance optimization,
parallel programming) we plot functions
describing the run time (or the memory use) of a
program:
n This can be as a function of the input size (or other

parameters like # of processors)

n The functions are usually positive and
monotonically increasing

n We are interested in the asymptotic behavior, i.e.,
lim$→&'())

n How should we graph/plot them (e.g., lab report)?

20

8/31/21

11

n The plot shows the ideal (expected) vs empirical (observed)
values. Which one is ideal, and which is “just a bit off?”
n Series 1 (blue)
n Series 2 (orange)

21

0	

50	

100	

150	

200	

250	

300	

1	 2	 3	 4	 5	 6	 7	

Series1	

Series2	

n Same question, data is plotted differently.
n Series 1 (blue)
n Series 2 (orange)

22

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1	 2	 3	 4	 5	 6	 7	 8	

Series1	

Series2	

8/31/21

12

n What class of functions are
f, g, and h?
n Polynomial? What

degree?
n Exponential? What base?

n Impossible/hard to tell
23

n f(n) g(n) h(n)

1 2 9 2

2 12 18 6

3 36 35 24

4 80 68 68

5 150 131 162

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 3" 4" 5"

f"

g"

h"

n The human visual system is very good at
identifying linear (straight line) plots.

n Everything else is approximate.

n Asymptotically increasing functions just “swoosh
up,” i.e., lim$→&' (= ∞

n Not enough range of data in second set of examples
here just 1 … 5)

24

8/31/21

13

Much better idea now about which
function may be polynomial vs
exponential? But still

n all is not clear (order, base …)
n h(n) may spike up later…

25

n f(n) g(n) h(n)
1 2 9 2
2 12 18 6
3 36 35 24
4 80 68 68
5 150 131 162
7 400 520 624
10 1100 4106 2510
12 1872 16396 5196

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

0" 2" 4" 6" 8" 10" 12" 14"

f"

g"

h"

We get the most information from straight lines!
n We can easily recognize a straight line

y = ax+b
n The slope (a) and y intercept (b) tells us all.

n How to “massage the data” into straight lines.
n Change the scale to logarithmic: it turns a

multiplicative factor into a shift (y axis crossing
b) , and an exponential into a multiplicative
factor (slope a)

26

8/31/21

14

! = 2$ log() ! = * log()2 linear in n

! = 3$ log() ! = * log()3
the slope is the (log of the) base of the

exponent
! = 6×3$ log() ! = * log()3 + log()6

6 shifts up (in log scale)
! = 3$/5 log() ! = * log()3 − log()5

5 shifts down

27

28

n 2n 3n 20*3n

0 1 1 20

1 2 3 60

2 4 9 180

3 8 27 540

4 16 81 1620

5 32 243 4860

7 128 2087 41740

10 1024 56349 1126980

1"

10"

100"

1000"

10000"

100000"

1000000"

10000000"

0" 2" 4" 6" 8" 10" 12"

2^n"

3^n"

20"3^n"

semi-log plot:
y–axis on log scale
x-axis linear

angle: base
shift: multiplicative factor

8/31/21

15

What is the logarithm of a polynomial (actually a
monomial)?
n ! = 5$%
n log)* ! = log)*5 + log)* $% = log)*5 + 3 log)* $

Definitely not a straight line.

n But what about this?
n So we use a log-log scale/plot

29

30

n n2 n3 20*n3

1 1 1 20

2 4 8 160

4 16 64 1280

8 64 512 10240

16 256 4096 81820

32 1024 32768 655360

slope: degree
shift: multiplicative factor

1"

10"

100"

1000"

10000"

100000"

1000000"

1" 10" 100"

n^2"

n^3"

20"n^3"

8/31/21

16

n Functions like ! " = 3% + 4% and polynomials that have
more than one term. We don’t have a simple algebraic
rule to compute logarithms of the sum of multiple terms

n Now, ! " = 3% +4% = 4% 1+)
*
%

n and since)
* < 1, so lim%→0 1 +)

*
%
= 1

n so, as " →∞, we have log! " → log4%×1 = log4×"
i.e., only the dominant term matters

n For a polynomial like ! " = 4×") +3×"5 we do the same
thing ! " = ") 4 +)

*% and
as " → ∞, the term in parentheses approaches 4,
so log ! " → log 4×") = log 4 + 3 log "

n Message: when plotting your data, look for the trend among
the points with larger input values

31

32

n f(n)
1 2
2 12
3 36
4 80
5 150
7 400
10 1100

12 1872 1"

10"

100"

1000"

10000"

0" 5" 10" 15" 20" 25"

f"

f"

The semi-log plot does not give a straight line,
so f is not exponential

8/31/21

17

33

n f(n)
1 2
2 12
3 36
4 80
5 150
7 400
10 1100

12 1872

YES! The log-log plot is asymptotically a straight line, so f
is polynomial, but what is its leading term?

1"

10"

100"

1000"

10000"

1" 10" 100"

f"

f"

34

Compare with n, n2,n3,n4

It is degree 3, no multiplicative factor

1"

10"

100"

1000"

10000"

100000"

1000000"

1" 10" 100"

f"

n*n"

n*n*n"

n*n*n*n"

n f(n) n2 n3 n4

1 2 1 1 1
2 12 4 8 16
3 36 9 27 81
4 80 16 64 256
5 150 25 125 625
7 400 49 343 2401
1
0

1100 100 1000 10000

1
2

1872 144 1728 20736

8/31/21

18

n All polynomial functions are members
n Membership test: to enter the club you scan your id

n checker is just a log-log plotter you’re in if it’s a
straight line with slope between 0° to 90°

n Slowest growing polynomial (fastest algorithms)
are polynomials $ % = %' where, (is an
arbitrarily small constant.

n Fastest growing polynomial (slowest algorithms)
$ % = %) where, Γ is an arbitrarily large constant

35

n All exponential functions are members
n Membership test: to enter the club you scan your id

n checker is just a semi-log plotter you’re in if it’s a
straight line with slope between 0° to 90°

n Slowest growing exponential (fastest algorithms)
are exponential $ % = '(where,) is an arbitrarily
small constant.

n Fastest growing exponential (slowest algorithms)
$ % = Γ(where, Γ is an arbitrarily large constant.

36

8/31/21

19

n The basic mathematical definition of ⋖,⋗, $ and Ω still
hold: for large enough n one function exceeds the other,

n The plotting trick is simply to compress the x or y axis
plotting, and it doesn’t change asymptotic behavior

n What if we compress the x axis and not the y axis: a so-
called log-semi plot (but this naming convention is soon
going to prove inadequate)
n These are the poly-log functions: polynomials of log)
n The worst poly-log algorithm is faster the fastest

polynomial algorithm log*) ⋖)+
n Super-exponential functions: straight line when we plot
log log ,()) vs)

37

n Each club conducts their internal tournaments, and
ranks their members.

n Algorithm designers try to invent new algorithms for
open problems
n When they give a new algorithm when the previous best

was in the same club, they reduce the slope by a constant,
and it’s a big accomplishment, e.g., going from O "# to
O "$.&

n even if that improvement comes at a “cost” of a factor that is
equal the slowest member of a faster club

n A new algorithm that’s in a faster club a major
breakthrough.

n Breakthroughs between the exponential and polynomial
clubs are increasingly unlikely

38

8/31/21

20

n Wim’s slides 44 – 77

39

n Wim’s slides 44 – 77

40

