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As soon as an Analytic Engine exists, it will necessarily 
guide the future course of the science.  Whenever any 
result is sought by its aid, the question will arise - By what 
course of calculation can these results be arrived at by the 
machine in the shortest time?  - Charles Babbage

Charles Babbage (1864) Analytic Engine (schematic)
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n Algorithm time complexity

n Plotting data and the function clubs

n Digression: line of sight algorithm

n A survey of common running times
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n How do we measure the complexity (time, space
requirements) of an algorithm?

n As a function of its input size (an integer, n) 
denoting:

n Number of inputs (e.g., sorting)
n Number of bits to represent the input (e.g., primality)
n Sometimes multiple parameters, e.g., knapsack

§ Number of objects, n
§ Knapsack capacity, C

We want to determine the running time as a 
function of problem sizes, and analyze them 
asymptotically
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n Seconds/nano-seconds?

n No, too specific & machine dependent

n Number of instructions executed?

n No, still too specific & machine dependent

n # of code fragments that take constant time?

n Yes

n What kind of fragments/instructions?

n Arithmetic operations,
memory accesses,
finite combinations of these
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n Bits?

n Too detailed, but sometimes necessary (e.g., 
knapsack capacity)

n Integers?

n Nicer, but dangerous – we can code a whole 
program in a single arbitrary sized integer, so we 
have to be careful about the size.  Better to use 
machine words
i.e, fixed size (e.g., 64, collections of bits)
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n A bound on the maximum possible running time of the 
algorithm of inputs of size n
n Usually captures the notion, but may be an overestimate

n Average case
n More accurate but difficult – need to describe what is the 

range of inputs, and what is the distribution, statistical 
analysis.  Let  I be the set of inputs, and  Pi and Ci be the 
probability and computation time of input i

!
"∈$

%"&"

n Often a constant factor of worst case time

Same considerations for space and other measures.
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n For many problems, there is a natural, but likely 
naïve, brute force search algorithm that checks 
every possible solution
n Enumerating such solutions is usually an exponential 

function of n (recall counting from CS220).
n Hence naïve

n Definition: an algorithm is said to be polynomial 
time if there exist positive constants  c, and d, such 
that on any input of size n, the running time is 
bounded by c nd

What about an algorithm whose running time is c n lg n?

10
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(Why) is the distinction important?
n One the one hand, a polynomial function like

6.03 �1023 n20 is polynomial, it is too large in practice 
(e.g., for n=10)

n On the other hand, some algorithm whose worst case 
execution time is exponential behave much better in 
practice because he worst-case instances are (seem to be) 
rare
n Simplex method for solving linear programming

So why?
n In practice, the polynomials have a low degree and 

coefficients
n The difference between the polynomial-exponential 

barrier reveals interesting and crucial structure of the 
problem
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n We are building mathematical functions that model the execution time 
(or other properties) of programs and algorithms.

n Need a mechanism to compare them.
n How do we compare numbers?  Using the relations: <,>,≤, and ≥
n Partial/total orders

n The Big-Oh, Big-Omega and Big-Theta notation (introduced in CS 220) is 
such an order relation.

Here, & ⋖ (means that f grows slower than g (and also that g grows 
faster than f).  We may also use ( ⋗ &. So the following claims mean the 
same thing
n &(+) ⋖ ((+)
n ( ⋗ &
n & = .(()
n ((+) = Ω(&(+))

n Often, one of the functions is our (complicated) model 0(+) and the 
other is a simpler function (e.g., a monomial)

12
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F(n) is O(G(n))

F(n) is W(H(n))

if G(n) = c.H(n)
then F(n) is Q(G(n))

These measures were 
introduced in CS220

G(n)

F(n)

H(n)

A function !(#) is %(&(#)) if there exist constants ' >
0 and #* > 0 such that 

for all # ³ #0 ∶ !(#) £ ' &(#)
n Example:   ! # = 32#2 + 16# + 32.

n !(#) is %(#2)
n ALSO TRUE:

n !(#) is % #3
n ! # is% 2#

n Many possible upper bounds for one function!  
We always look for the best (lowest) upper 
bound, but it is not always easy to establish

14
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n Transitivity

n ! ⋖ # and # ⋖ ℎ implies ! ⋖ ℎ

n Additivity

n ! ⋖ ℎ and # ⋖ ℎ implies ! + # ⋖ ℎ

n Multiplication by a constant

n ! ⋖ # implies &×! ⋖ # (and of course ! ⋖ &×# holds 
by definition
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Although Big-Oh and Big-Omega are equivalent, a 
special need arises when our model !(#) is quantified 
over all algorithms to solve the given problem
n Example: consider the claim that any comparison based 

algorithm must make at least % × # log # comparisons, 
for some constant, %.We say that comparison based 
sorting is lower bounded by # lg #, i.e., that
! # is Ω(# lg #) and we often reserve the Ω
notation for this.

n Problems have lower bounds
n A common lower bound is the size of the input itself (any 

algorithm to solve the problem must read all the inputs)
n Sometimes we can prove better/tighter lower bounds (e.g., 

sorting above and searching is structured data (CS 420)
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n If ! " is Ω(%("))and ! " is also '(%(")) we 

have a tight bound, and we write that ! " is 
Θ(%(")).

n It means that we have closed the problem, 
since the algorithm that we have attains the 
lower bound on the problem
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Sorting is a closed problem
n It has a lower bound of ! log !. We say that sorting 

is Ω(! log !)
n There are many sorting algorithms whose 

execution time is ((! log !) (see how we use big-Oh 
to talk about an algorithm)

Matrix multiplication is an open problem
n It is Ω(!)). Why?

n The standard algorithm is ( !*
n Another well known algorithm is ( !).*,- and further 

improvements reduce the polynomial degree even 
further

See how the polynomial degree does not have to be 
integer

18
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n In empirical CS (HPC, performance optimization, 
parallel programming) we plot functions 
describing the run time (or the memory use) of a 
program:
n This can be as a function of the input size (or other 

parameters like # of processors)

n The functions are usually positive and 
monotonically increasing

n We are interested in the asymptotic behavior, i.e., 
lim$→&'())

n How should we graph/plot them (e.g., lab report)?

20
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n The plot shows the ideal (expected) vs empirical (observed) 
values.  Which one is ideal, and which is “just a bit off?”
n Series 1 (blue)
n Series 2 (orange)
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n Same question, data is plotted differently.
n Series 1 (blue)
n Series 2 (orange)
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n What class of functions are 
f, g, and h? 
n Polynomial? What 

degree?
n Exponential? What base? 

n Impossible/hard to tell
23

n f(n) g(n) h(n)

1 2 9 2

2 12 18 6

3 36 35 24

4 80 68 68

5 150 131 162
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n The human visual system is very good at 
identifying linear (straight line) plots.

n Everything else is approximate.

n Asymptotically increasing functions just “swoosh 
up,” i.e., lim$→&' ( = ∞

n Not enough range of data in second set of examples 
here just 1 … 5)

24



8/31/21

13

Much better idea now about which 
function may be polynomial vs 
exponential? But still

n all is not clear (order, base …)
n h(n) may spike up later…

25

n f(n) g(n) h(n)
1 2 9 2
2 12 18 6
3 36 35 24
4 80 68 68
5 150 131 162
7 400 520 624
10 1100 4106 2510
12 1872 16396 5196
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We get the most information from straight lines!
n We can easily recognize a straight line 

y = ax+b
n The slope (a) and y intercept (b) tells us all.

n How to “massage the data”  into straight lines.
n Change the scale to logarithmic: it turns a 

multiplicative factor into a shift (y axis crossing 
b) , and an exponential into a multiplicative 
factor (slope a)
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! = 2$ log() ! = * log()2 linear in n

! = 3$ log() ! = * log()3
the slope is the (log of the) base of the 

exponent
! = 6×3$ log() ! = * log()3 + log()6

6 shifts up (in log scale)
! = 3$/5 log() ! = * log()3 − log()5

5 shifts down

27
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n 2n 3n 20*3n

0 1 1 20

1 2 3 60

2 4 9 180

3 8 27 540

4 16 81 1620

5 32 243 4860

7 128 2087 41740

10 1024 56349 1126980
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semi-log plot:
y–axis on log scale
x-axis linear

angle:  base
shift:    multiplicative factor
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What is the logarithm of a polynomial (actually a 
monomial)?
n ! = 5$%
n log)* ! = log)*5 + log)* $% = log)*5 + 3 log)* $

Definitely not a straight line.

n But what about this?
n So we use a log-log scale/plot

29
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n n2 n3 20*n3

1 1 1 20

2 4 8 160

4 16 64 1280

8 64 512 10240

16 256 4096 81820

32 1024 32768 655360

slope:  degree
shift: multiplicative factor
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n Functions like ! " = 3% + 4% and polynomials that have 
more than one term.  We don’t have a simple algebraic 
rule to compute logarithms of the sum of multiple terms

n Now, ! " = 3% +4% = 4% 1+ )
*
%

n and since )
* < 1, so lim%→0 1 + )

*
%
= 1

n so, as " →∞, we have log! " → log4%×1 = log4×"
i.e., only the dominant term matters

n For a polynomial like ! " = 4×") +3×"5 we do the same 
thing ! " = ") 4 + )

*% and
as " → ∞, the term in parentheses approaches 4,
so log ! " → log 4×") = log 4 + 3 log "

n Message: when plotting your data, look for the trend among 
the points with larger input values

31

32

n f(n)
1 2
2 12
3 36
4 80
5 150
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The semi-log plot does not give a straight line, 
so f is not exponential 
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n f(n)
1 2
2 12
3 36
4 80
5 150
7 400
10 1100

12 1872

YES!  The log-log plot is asymptotically a straight line, so f 
is polynomial, but what is its leading term? 
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Compare with n, n2,n3,n4

It is degree 3, no multiplicative factor
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n f(n) n2 n3 n4

1 2 1 1 1
2 12 4 8 16
3 36 9 27 81
4 80 16 64 256
5 150 25 125 625
7 400 49 343 2401
1
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n All polynomial functions are members
n Membership test: to enter the club you scan your id

n checker is just a log-log plotter you’re in if it’s a 
straight line with slope between 0° to  90°

n Slowest growing polynomial (fastest algorithms) 
are polynomials $ % = %' where, ( is an 
arbitrarily small constant.

n Fastest growing polynomial (slowest algorithms) 
$ % = %) where, Γ is an arbitrarily large constant
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n All exponential functions are members
n Membership test: to enter the club you scan your id

n checker is just a semi-log plotter you’re in if it’s a 
straight line with slope between 0° to  90°

n Slowest growing exponential (fastest algorithms) 
are exponential $ % = '( where, ) is an arbitrarily 
small constant.

n Fastest growing exponential (slowest algorithms) 
$ % = Γ( where, Γ is an arbitrarily large constant.
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n The basic mathematical definition of ⋖,⋗, $ and Ω still 
hold: for large enough n one function exceeds the other,

n The plotting trick is simply to compress the x or y axis 
plotting, and it doesn’t change asymptotic behavior

n What if we compress the x axis and not the y axis: a so-
called log-semi plot (but this naming convention is soon 
going to prove inadequate)
n These are the poly-log functions: polynomials of log )
n The worst poly-log algorithm is faster the fastest 

polynomial algorithm log*) ⋖ )+
n Super-exponential functions: straight line when we plot 
log log ,()) vs )
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n Each club conducts their internal tournaments, and 
ranks their members.

n Algorithm designers try to invent new algorithms for 
open problems
n When they give a new algorithm when the previous best 

was in the same club, they reduce the slope  by a constant, 
and it’s a big accomplishment, e.g., going from O "# to  
O "$.&

n even if that improvement comes at a “cost” of a factor that is 
equal the slowest member of a faster club

n A new algorithm that’s in a faster club a major 
breakthrough.

n Breakthroughs between the exponential and polynomial 
clubs are increasingly unlikely

38
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n Wim’s slides 44 – 77 
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n Wim’s slides 44 – 77 
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