CS 320, Fall 2021 WA1: Complexity, Orders of Magnitude

Problem Set	Торіс	Max Pts	Your Score
Ι	Comparing functions	20	
п	Function Clubs	30	
ш	Analyzing Programs	50	
	Total	100	

Study the lectures on Big Oh and read Chapter 3 of the CLRS text.

ProblemSet I: Growth Rates of Fun In each question below, circle one of t		[20 pts]
1. $f(n) = n^2 + 2n + 1000$.		
Is $f(n) O(n)$?	Yes / No	[2 pts]
Is $f(n) O(n^2)$?	Yes / No	[2 pts]
2. $f(n) = 3n^2 \log^2 n + 10^6$.		
Is $f(n) \leq n^2$?	Yes / No	[2 pts]
Is $f(n) \Theta(n^2 \log n)$?	Yes / No	[2 pts]
3. $f(n) = 3^n + 2n^5 + n^3$.		
Is $f(n) O(n^3)$?	Yes / No	[2 pts]
Is $f(n) O(2^n)$?	Yes / No	[2 pts]
4. $f(n) = 3^n, g(n) = 2^n + n^2$.		
Is $f(n) \leq g(n)$?	Yes / No	[2 pts]
Is $g(n) < f(n)$?	Yes / No	[2 pts]
5. $f(n) = \log_3 n, g(n) = \log_8 n.$		
Is $f(n) O(g(n))$?	Yes / No	[2 pts]
Is $g(n) O(f(n))$?	Yes / No	[2 pts]

ProblemSet II: The Clubs of Functions

In the following problems, we say that a function f(n) *swoops up* if it grows faster than any straight line, however high its slope. We say that it *swoops right* if any straight line, of arbitrarily small slope grows faster than f(n). A function f(n), *slowed down* by a factor of g(n) refers to the product of the two, i.e., the function f(n)g(n).

Classify each of the following functions into their respective clubs: E (exponential), P (polynomial) and PL (poly-logarithmic) or neither

1. $f_1(n) = n^2 + 2n + 1000$	E / P / PL / neither	[1 pt]
2. $f_2(n) = 3n^2 \log^2 n + 10^6$	E / P / PL / neither	[1 pt]
3. $f_3(n) = 3^n + 2n^5 + n^3$	E / P / PL / neither	[1 pt]
4. $f_4(n) = 3^n n^2$	E / P / PL / neither	[1 pt]
5. $f_5(n) = n^2 \lg^2 n$	E / P / PL / neither	[1 pt]
6. $f_6(n) = 5 \log_8^3 n$	E / P / PL / neither	[1 pt]

In each of the True/False questions below, the correct answer is worth 1 point, and the justification is worth 3 points.

1.
$$f_1(n)$$
 swoops up on a semi-log plot T / F [4 pts]

2. $f_2(n)$ is indistinguishable from a straight line on a log-log plot T / F [4 pts]

3

3. $f_2(n)$ is a straight line on a log-log plot	T / F	[4 pts]
4. $f_3(n)$ swoops right on a log-log plot	T / F	[4 pts]
		_
5. $f_4(n)$ swoops up on a log-log plot	T/F	[4 pts]
		[. []
f(x) success right on a log log right	T / F	[4 mts]
6. $f_6(n)$ swoops right on a log-log plot	T/F	[4 pts]

ProblemSet III: Analyzing the complexity of program fragments [50 pts]

For each of the code fragments below, determine the best (lowest) worst case big-Oh complexity as a function of n. Please show the complete derivation of your answers. Use additional sheets of paper as needed.

```
1. def f1(n):
      c = 0
      step = n
      while (step > 0):
          step /= 3 # assume integer division
           for i in range(n):
             C++
      return c
2. def f2(n):
      c = 0
      step = 1
      while step < n:
          step *= 3
          i = 1
          while i<n:
               C++
               i = 2*i
      return c
3. def f3(n):
      c = 0
      for i in range(n):
           for j in range(i):
               step = 1
               while step < n:
                   step *= 3
                   C++
      return c
4. def f4(n):
      if n < 1:
          return 1
      return f4(n-1) + f4(n-1)
```