
7/29/2019

1

Transistors and
State Machines

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-2

CMOS Circuit
Complementary MOS

Uses both n-type and p-type MOS transistors
• p-type

Attached to + voltage

Pulls output voltage UP when input is zero

• n-type

Attached to GND

Pulls output voltage DOWN when input is one

For all inputs, make sure that output is either connected to GND or to +,
but not both!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-3

NOR Gate

A B C

0 0 1

0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.

7/29/2019

2

Arbitrary Boolean Expression

A B C Out

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

NOT(C AND (A OR B))

Storage: Master-Slave Flipflop
A pair of gated D-latches,
to isolate next state from current state.

During 1st phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2nd phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

Analyzing a FSM: Logic Circuit to State Diagram
1. Describe combinational circuit outputs using Boolean

algebra.

2. Create the state table (truth table) for all possible
input/state combinations.
1. Inputs: Input, Present State

2. Outputs: Next State, Outputs (if different from State)

3. Produce a state diagram that satisfies the state table.

7/29/2019

3

Designing a FSM: Specification to Circuit

• Create a State Diagram from the specifications.
• May need to clarify specifications

• Determine the number of flip-flops needed by assigning each state
a unique binary combination.

• Create the State Table (truth table) for all possible input/state
combinations.

• Inputs: Input, Present State

• Outputs: Next State, Outputs (if different from State)

• Create the combinational circuit from State Table

• Complete the circuit with by adding flip-flops to compinational
circuit

• Simulate and verify the design.

Mealy vs Moore state machines

Moore: Outputs are only based on current state
• Each state labeled with an output

• Outputs change only at clock edge following input change

• Potentially simpler to conceptualize

• Simpler to interconnect with other state machines

• Every Moore machine convertible to a Mealy machine

Mealy: Outputs are based on current state and inputs
• Each arc/transition labeled with a output

• Tend to have fewer states

• Outputs shown on transition arcs in state diagrams

• Output changes in the same cycle as input is received

https://en.wikipedia.org/wiki/Mealy_machine https://en.wikipedia.org/wiki/Moore_machine

Traffic Sign: Mealy or Moore?

X

Z Mealy: Output
depends on State
and Input.

7/29/2019

4

Traffic Sign Truth Tables: Moore

Outputs
(depend only on state: S1,S0)

S1 S0 X Y Z

0 0 0 0 0

0 1 1 0 0

1 0 1 1 0

1 1 1 1 1

Lights 1 and 2

Lights 3 and 4

Light 5

Next State: S1’,S0’
(depend on state and input)

In S1 S0 S1’ S0’

0 X X 0 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

Switch

Whenever In=0, next state is 00.

Mealy sign arrow implementation in Logisim

Traffic Sign Truth Tables: Mealy

Next State: S1’, S0’, Outputs X, Y, Z
(depend on state and input)

In S1 S0 S1’ S0’ X Y Z

0 X X 0 0 0 0 0

1 0 0 0 1 1 0 0

1 0 1 1 0 1 1 0

1 1 0 1 1 1 1 1

1 1 1 0 0 0 0 0

Whenever In=0, next state is 00.

Lights 1 and 2

Lights 3 and 4

Light 5Switch

7/29/2019

5

Moore sign arrow implementation in Logisim

