
Morgan Kaufmann Publishers 7 August, 2019

Chapter 4 — The Processor 1

COMPUTERORGANIZATIONAND DESIGN
The Hardware/Software Interface

ARM
Edition

Chapter 4
The Processor

Chapter 4 — The Processor — 2

Performance Issues

 Longest delay determines clock period
 Critical path: load instruction

 Instruction memory register file ALU
data memory register file

 Not feasible to vary period for different
instructions

 Violates design principle
 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 3

Pipelining Analogy

 Pipelined laundry: overlapping execution
 Parallelism improves performance

§
4

.5
 A

n
 O

ve
rvie

w
 o

f P
ip

e
lin

in
g Four loads:

 Speedup
= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

Morgan Kaufmann Publishers 7 August, 2019

Chapter 4 — The Processor 2

Chapter 4 — The Processor — 4

LEGv8 Pipeline

 Five stages, one step per stage
1. IF: Instruction fetch from

memory

2. ID: Instruction decode & register
read

3. EX: Execute operation or
calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

LC3

Chapter 4 — The Processor — 5

Pipeline Performance
 Assume time for stages is

 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle datapath

Instr Instr
fetch

Register
read

ALU op Memory
access

Register
write

Total
time

LDUR 200ps 100 ps 200ps 200ps 100 ps 800ps

STUR 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

CBZ 200ps 100 ps 200ps 500ps

LDUR = LD STUR = ST R-format = ADD, AND CBZ = BRz

Chapter 4 — The Processor — 6

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Morgan Kaufmann Publishers 7 August, 2019

Chapter 4 — The Processor 3

Chapter 4 — The Processor — 7

Pipeline Speedup

 If all stages are balanced
 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput
 Latency (time for each instruction) does not

decrease

Chapter 4 — The Processor — 8

Pipelining and ISA Design

 LEGv8 ISA designed for pipelining
 All instructions are 32-bits

 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

Chapter 4 — The Processor — 9

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards
 A required resource is busy

 Data hazard
 Need to wait for previous instruction to

complete its data read/write

 Control hazard
 Deciding on control action depends on

previous instruction

Morgan Kaufmann Publishers 7 August, 2019

Chapter 4 — The Processor 4

Chapter 4 — The Processor — 10

Structure Hazards

 Conflict for use of a resource

 In LEGv8 pipeline with a single memory
 Load/store requires data access

 Instruction fetch would have to stall for that
cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Chapter 4 — The Processor — 11

Data Hazards

 An instruction depends on completion of
data access by a previous instruction
 ADD X19, X0, X1
SUB X2, X19, X3

Chapter 4 — The Processor — 12

Forwarding (aka Bypassing)

 Use result when it is computed
 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Morgan Kaufmann Publishers 7 August, 2019

Chapter 4 — The Processor 5

Chapter 4 — The Processor — 13

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding
 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 14

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in
the next instruction

 C code for A = B + E; C = B + F;

LDUR X1, [X0,#0]

LDUR X2, [X0,#8]

ADD X3, X1, X2

STUR X3, [X0,#24]

LDUR X4, [X0,#16]

ADD X5, X1, X4

STUR X5, [X0,#32]

stall

stall

LDUR X1, [X0,#0]

LDUR X2, [X0,#8]

LDUR X4, [X0,#16]

ADD X3, X1, X2

STUR X3, [X0,#24]

ADD X5, X1, X4

STUR X5, [X0,#32]

11 cycles13 cycles

Chapter 4 — The Processor — 15

Control Hazards

 Branch determines flow of control
 Fetching next instruction depends on branch

outcome
 Pipeline can’t always fetch correct instruction

 Still working on ID stage of branch

 In LEGv8 pipeline
 Need to compare registers and compute

target early in the pipeline
 Add hardware to do it in ID stage

Morgan Kaufmann Publishers 7 August, 2019

Chapter 4 — The Processor 6

Chapter 4 — The Processor — 16

Stall on Branch

 Wait until branch outcome determined
before fetching next instruction

Chapter 4 — The Processor — 17

Branch Prediction

 Longer pipelines can’t readily determine
branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In LEGv8 pipeline
 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 18

More-Realistic Branch Prediction

 Static branch prediction
 Based on typical branch behavior

 Example: loop and if-statement branches
 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Morgan Kaufmann Publishers 7 August, 2019

Chapter 4 — The Processor 7

Chapter 4 — The Processor — 19

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

The BIG Picture

