
1

Midterm 1
Review

CS270 - Spring Semester 2019
1

General
Bring student ID card

• Must have it to check into lab

Seating
• Randomized seating chart

• Front rows

• Check when you enter the room

Exam
• No time limit, 100 points

• NO notes, calculators, or other aides

• Put your smartwatch / phone in your pocket!

MR1-2

1-3

Turing Machine

Mathematical model of a device that can perform
any computation – Alan Turing (1937)

• ability to read/write symbols on an infinite “tape”
• state transitions, based on current state and symbol

Every computation can be performed by some
Turing machine. (Turing’s thesis)

Tadd
a,b a+b

Turing machine that adds

Tmul
a,b ab

Turing machine that multiplies

For more info about Turing machines, see
http://www.wikipedia.org/wiki/Turing_machine/

For more about Alan Turing, see
http://www.turing.org.uk/turing/

2

1-4

Universal Turing Machine
A machine that can implement all Turing machines
-- this is also a Turing machine!

• inputs: data, plus a description of computation (other TMs)

U
a,b,c c(a+b)

Universal Turing Machine

Tadd, Tmul

U is programmable – so is a computer!
• instructions are part of the input data
• a computer can emulate a Universal Turing Machine

A computer is a universal computing device.

Introduction to
Programming in C

11-6

Compilation vs. Interpretation
Different ways of translating high-level language

Interpretation
• interpreter = program that executes program statements

• generally one line/command at a time

• limited processing

• easy to debug, make changes, view intermediate results

• languages: BASIC, LISP, Perl, Java, Matlab, C-shell

Compilation
• translates statements into machine language

does not execute, but creates executable program

• performs optimization over multiple statements

• change requires recompilation

can be harder to debug, since executed code may be
different

• languages: C, C++, Fortran, Pascal

3

11-7

Compiling a C Program

Entire mechanism is usually called
the “compiler”

Preprocessor
• macro substitution

• conditional compilation

• “source-level” transformations

output is still C

Compiler
• generates object file

machine instructions

Linker
• combine object files

(including libraries)
into executable image

C
Source and
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

Bits, Data Types,
and Operations

2-9

How do we represent data in a computer?

At the lowest level, a computer is an electronic machine.
• works by controlling the flow of electrons

Easy to recognize two conditions:
1. presence of a voltage – we’ll call this state “1”

2. absence of a voltage – we’ll call this state “0”

Could base state on value of voltage,
but control and detection circuits more complex.

• compare turning on a light switch to
measuring or regulating voltage

4

2-10

What kinds of data do we need to
represent?

• Numbers – signed, unsigned, integers, floating point,
complex, rational, irrational, …

• Logical – true, false

• Text – characters, strings, …

• Instructions (binary) – LC-3, x-86 ..

• Images – jpeg, gif, bmp, png ...

• Sound – mp3, wav..

• …

Data type:
• representation and operations within the computer

We’ll start with numbers…

2-11

Unsigned Integers

Non-positional notation
• could represent a number (“5”) with a string of ones (“11111”)

• problems?

Weighted positional notation
• like decimal numbers: “329”

• “3” is worth 300, because of its position, while “9” is only worth 9

329
102 101 100

101
22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most
significant

least
significant

2-12

Unsigned Binary Arithmetic
Base-2 addition – just like base-10!

• add from right to left, propagating carry

10010 10010 1111
+ 1001 + 1011 + 1
11011 11101 10000

10111
+ 111

carry

Subtraction, multiplication, division,…

5

2-13

Signed Integers

With n bits, we have 2n distinct values.
• assign about half to positive integers (1 through 2n-1)

and about half to negative (- 2n-1 through -1)

• that leaves two values: one for 0, and one extra

Positive integers
• just like unsigned – zero in most significant (MS) bit

00101 = 5

Negative integers: formats
• sign-magnitude – set MS bit to show negative,

other bits are the same as unsigned
10101 = -5

• one’s complement – flip every bit to represent negative
11010 = -5

• in either case, MS bit indicates sign: 0=positive, 1=negative

2-14

Two’s Complement Representation
If number is positive or zero,

• normal binary representation, zeroes in upper bit(s)

If number is negative,
• start with positive number

• flip every bit (i.e., take the one’s complement)

• then add one

00101 (5) 01001 (9)
11010 (1’s comp) (1’s comp)

+ 1 + 1
11011 (-5) (-9)

2-15

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s
complement to get a positive number.

2. Add powers of 2 that have “1” in the
corresponding bit positions.

3. If original number was negative,
add a minus sign.

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

1
0

102
4

X = 01101000two
= 26+25+23 = 64+32+8
= 104ten

Assuming 8-bit 2’s complement numbers.

6

2-16

Sign Extension
To add two numbers, we must represent them
with the same number of bits.

If we just pad with zeroes on the left:

Instead, replicate the MS bit -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100 (still -4)

2-17

Overflow

If operands are too big, then sum cannot be represented
as an n-bit 2’s comp number.

We have overflow if:
• signs of both operands are the same, and

• sign of sum is different.

Another test -- easy for hardware:
• carry into MS bit does not equal carry out

01000 (8) 11000 (-8)
+ 01001 (9) + 10111 (-9)
10001 (-15) 01111 (+15)

2-18

Examples of Logical Operations
AND

• useful for clearing bits
AND with zero = 0
AND with one = no change

OR
• useful for setting bits

OR with zero = no change
OR with one = 1

NOT
• unary operation -- one argument
• flips every bit

11000101
AND 00001111

00000101

11000101
OR 00001111

11001111

NOT 11000101
00111010

7

2-19

Hexadecimal Notation
It is often convenient to write binary (base-2) numbers
as hexadecimal (base-16) numbers instead.

• fewer digits -- four bits per hex digit

• less error prone -- easy to corrupt long string of 1’s and 0’s

Binary Hex Decimal
0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

Binary Hex Decimal
1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

2-20

Floating Point Example
Single-precision IEEE floating point number:

10111111010000000000000000000000

• Sign is 1 – number is negative.

• Exponent field is 01111110 = 126 (decimal).

• Fraction is 0.100000000000… = 0.5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75.

sign exponent fraction

Variables and
Operators

8

12-22

Data Types
C has three basic data types

int integer (at least 16 bits)

double floating point (at least 32 bits)

char character (at least 8 bits)

Exact size can vary, depending on processor
• int was supposed to be "natural" integer size;

for LC-3, that's 16 bits

• int is 32 bits for most modern processors, double usually 64 bits

CS270 - Fall Semester 2016

Scope: Global and Local

Where is the variable accessible?
Global: accessed anywhere in program
Local: only accessible in a particular region
Compiler infers scope from where variable is declared in
the program

• programmer doesn’t have to explicitly state

Variable is local to the block in which it is declared
• block defined by open and closed braces { }
• can access variable declared in any “containing” block
• global variables are declared outside all blocks

23

CS270 - Fall Semester 2016

Arithmetic Operators

All associate left to right.
* / % have higher precedence than + -.

Full precedence chart on page 602 of textbook

Symbol Operation Usage Precedence Assoc

* multiply x * y 6 l-to-r

/ divide x / y 6 l-to-r

% modulo x % y 6 l-to-r

+ add x + y 7 l-to-r

- subtract x - y 7 l-to-r

24

9

Bitwise Operators

Operate on variables bit-by-bit.
• Like LC-3 AND and NOT instructions.

Shift operations are logical (not arithmetic).
• Operate on values -- neither operand is changed.

Symbol Operation Usage Precedence Assoc

~ bitwise NOT ~x 4 r-to-l

<< left shift x << y 8 l-to-r

>> right shift x >> y 8 l-to-r

& bitwise AND x & y 11 l-to-r

^ bitwise XOR x ^ y 12 l-to-r

| bitwise OR x | y 13 l-to-r

25

Control
Structures

13-27

Control Structures
Conditional

• making a decision about which code to execute,
based on evaluated expression

• if

• if-else

• switch

Iteration
• executing code multiple times,

ending based on evaluated expression
• while

• for

• do-while

10

Functions

14-29

Function
Smaller, simpler, subcomponent of program

Provides abstraction
• hide low-level details

• give high-level structure to program,
easier to understand overall program flow

• enables separable, independent development

C functions
• zero or multiple arguments passed in

• single result returned (optional)

• return value is always a particular type

In other languages, called procedures, subroutines, ...

14-30

Functions in C
Declaration (also called prototype)

int Factorial(int n);

Function call -- used in expression
a = x + Factorial(f + g);

type of
return value

name of
function

types of all
arguments

1. evaluate arguments

2, execute function

3. use return value in expression

11

14-31

Function Definition

State type, name, types of arguments
• must match function declaration

• give name to each argument (doesn't have to match
declaration)

int Factorial(int n)

{

int i;
int result = 1;
for (i = 1; i <= n; i++)
result *= i;

return result;

}

gives control back to
calling function and

returns value

14-32

Why Declaration?
Since function definition also includes
return and argument types, why is declaration needed?

• Use might be seen before definition.
Compiler needs to know return and arg types
and number of arguments.

• Definition might be in a different file, written by
a different programmer.

• include a "header" file with function declarations only

• compile separately, link together to make executable

For each function call
• A stack-frame (“activation record”) Is inserted (“pushed”) in the

run-time stack

• It holds

 local variables,

arguments

values returned

• If the function is recursive, for each iteration inserts a stack-
frame.

• When a function returns, the corresponding stack-frame is
removed (“popped”)

• When a function returns, its local variables are gone.

14-33

Storing local variables for a function

12

14-34

Implementing Functions: Overview
Activation record

• information about each function,
including arguments and local variables

• stored on run-time stack

Calling function

push new activation
record

copy values into
arguments

call function

get result from stack

Called function

execute code
put result in

activation record
pop activation record

from stack
return

Pointers and Arrays

16-36

Pointers and Arrays

We've seen examples of both of these
in our LC-3 programs; now we'll see them in C.

Pointer
• Address of a variable in memory

• Allows us to indirectly access variables

 in other words, we can talk about its address
rather than its value

Array
• A list of values arranged sequentially in memory

• Example: a list of telephone numbers

• Expression a[4] refers to the 5th element of the array a

13

16-37

Address vs. Value

Sometimes we want to deal with the address
of a memory location,
rather than the value it contains.

Recall example from Chapter 6:
adding a column of numbers.
• R2 contains address of first location.

• Read value, add to sum, and
increment R2 until all numbers
have been processed.

R2 is a pointer -- it contains the
address of data we’re interested in.

x3107
x2819
x0110
x0310
x0100
x1110
x11B1
x0019

x3100

x3101

x3102

x3103

x3104

x3105

x3106

x3107

x3100R2

address

value

16-38

Another Need for Addresses
Consider the following function that's supposed to
swap the values of its arguments.

void Swap(int firstVal, int secondVal)
{
int tempVal = firstVal;
firstVal = secondVal;
secondVal = tempVal;

}

16-39

Pointers in C
C lets us talk about and manipulate pointers
as variables and in expressions.

Declaration
int *p; /* p is a pointer to an int */

A pointer in C is always a pointer to a particular data type:
int*, double*, char*, etc.

Operators
*p -- returns the value pointed to by p

&z -- returns the address of variable z

14

16-40

Example
int i;

int *ptr;

i = 4;

ptr = &i;

*ptr = *ptr + 1;

store the value 4 into the memory location
associated with i

store the address of i into the
memory location associated with ptr

read the contents of memory
at the address stored in ptr

store the result into memory
at the address stored in ptr

16-41

Pointers as Arguments
Passing a pointer into a function allows the function
to read/change memory outside its activation record.

void NewSwap(int *firstVal, int *secondVal)
{
int tempVal = *firstVal;
*firstVal = *secondVal;
*secondVal = tempVal;

}
Arguments are

integer pointers.
Caller passes addresses

of variables that it wants
function to change.

16-42

Array Syntax
Declaration

type variable[num_elements];

Array Reference
variable[index];

all array elements
are of the same type

number of elements must be
known at compile-time

i-th element of array (starting with zero);
no limit checking at compile-time or run-time

15

16-43

Array as a Local Variable
Array elements are allocated
as part of the activation record.

int grid[10];

First element (grid[0])
is at lowest address
of allocated space.

If grid is first variable allocated,
then R5 will point to grid[9].

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

16-44

Pointer Arithmetic
Address calculations depend on size of elements

• In our LC-3 code, we've been assuming one word per element.

e.g., to find 4th element, we add 4 to base address

• It's ok, because we've only shown code for int and char,
both of which take up one word.

• If double, we'd have to add 8 to find address of 4th element.

C does size calculations under the covers,
depending on size of item being pointed to:

double x[10];

double *y = x;
*(y + 3) = 13;

allocates 20 words (2 per element)

same as x[3] -- base address plus 6 (3*sizeof(double)

Data Structures
-struct
-dynamic memory allocation

16

19-46

Data Structures
A data structure is a particular organization
of data in memory.

• We want to group related items together.

• We want to organize these data bundles in a way that is
convenient to program and efficient to execute.

An array is one kind of data structure.

In this chapter, we look at two more:
struct – directly supported by C

linked list – built from struct and dynamic allocation

19-47

Structures in C

A struct is a mechanism for grouping together
related data items of different types.

• Recall that an array groups items of a single type.

Example:
We want to represent an airborne aircraft:

char flightNum[7];
int altitude;
int longitude;
int latitude;
int heading;
double airSpeed;

We can use a struct to group these data together for each plane.

19-48

Defining a Struct

We first need to define a new type for the compiler
and tell it what our struct looks like.
struct flightType {

char flightNum[7]; /* max 6 characters */
int altitude; /* in meters */
int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */

};

This tells the compiler how big our struct is and
how the different data items (“members”) are laid out in memory.

But it does not allocate any memory.

17

19-49

Defining and Declaring at Once

You can both define and declare a struct at the same time.
struct flightType {

char flightNum[7]; /* max 6 characters */
int altitude; /* in meters */
int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */

} maverick;

And you can use the flightType name
to declare other structs.
struct flightType iceMan;

19-50

typedef
C provides a way to define a data type
by giving a new name to a predefined type.

Syntax:
typedef <type> <name>;

Examples:
typedef int Color;

typedef struct flightType Flight;

typedef struct ab_type {
int a;
double b;

} ABGroup;

19-51

Using typedef
This gives us a way to make code more readable
by giving application-specific names to types.

Color pixels[500];

Flight plane1, plane2;

Typical practice:

Put typedef’s into a header file, and use type names in
main program. If the definition of Color/Flight
changes, you might not need to change the code in your
main program file.

18

19-52

Array of Structs
Can declare an array of structs:
Flight planes[100];

Each array element is a struct (7 words, in this case).

To access member of a particular element:
planes[34].altitude = 10000;

Because the [] and . operators are at the same precedence,
and both associate left-to-right, this is the same as:

(planes[34]).altitude = 10000;

19-53

Pointer to Struct
We can declare and create a pointer to a struct:
Flight *planePtr;
planePtr = &planes[34];

To access a member of the struct addressed by dayPtr:
(*planePtr).altitude = 10000;

Because the . operator has higher precedence than *,
this is NOT the same as:

*planePtr.altitude = 10000;

C provides special syntax for accessing a struct member
through a pointer:
planePtr->altitude = 10000;

19-54

Passing Structs as Arguments

Unlike an array, a struct is always passed by value
into a function.

• This means the struct members are copied to
the function’s activation record, and changes inside the function
are not reflected in the calling routine’s copy.

Most of the time, you’ll want to pass a pointer to a struct.

int Collide(Flight *planeA, Flight *planeB)
{

if (planeA->altitude == planeB->altitude) {
...

}
else

return 0;
}

19

19-55

Dynamic Allocation
Suppose we want our weather program to handle
a variable number of planes – as many as the user wants
to enter.

• We can’t allocate an array, because we don’t know the
maximum number of planes that might be required.

• Even if we do know the maximum number,
it might be wasteful to allocate that much memory
because most of the time only a few planes’ worth of data is
needed.

Solution:
Allocate storage for data dynamically, as needed.

19-56

malloc
The Standard C Library provides a function for
allocating memory at run-time: malloc.

void *malloc(int numBytes);

It returns a generic pointer (void*) to a contiguous
region of memory of the requested size (in bytes).

The bytes are allocated from a region in memory
called the heap.

• The run-time system keeps track of chunks of memory from the
heap that have been allocated.

19-57

Example
int airbornePlanes;
Flight *planes;

printf(“How many planes are in the air?”);
scanf(“%d”, &airbornePlanes);

planes =
(Flight*) malloc(sizeof(Flight) * airbornePlanes);

if (planes == NULL) {
printf(“Error in allocating the data array.\n”);
...

}
planes[0].altitude = ... If allocation fails,

malloc returns NULL.

Note: Can use array notation
or pointer notation.

20

19-58

Free and Calloc
Once the data is no longer needed,
it should be released back into the heap for later use.

This is done using the free function,
passing it the same address that was returned by malloc.

void free(void*);
If allocated data is not freed, the program might run out of
heap memory and be unable to continue.

Sometimes we prefer to initialize allocated memory to

zeros, calloc function does this:
void *calloc(size_t count, size_t size);

19-59

The Linked List Data Structure
A linked list is an ordered collection of nodes,
each of which contains some data,
connected using pointers.

• Each node points to the next node in the list.

• The first node in the list is called the head.

• The last node in the list is called the tail.

Node 0 Node 1 Node 2

NULL

19-60

Linked List vs. Array
A linked list can only be accessed sequentially.

To find the 5th element, for instance,
you must start from the head and follow the links
through four other nodes.

Advantages of linked list:
• Dynamic size

• Easy to add additional nodes as needed

• Easy to add or remove nodes from the middle of the list
(just add or redirect links)

Advantage of array:
• Can easily and quickly access arbitrary elements

21

Chapter 18
I/O in C

18-62

Standard C Library
• I/O commands are not included as part of the C

language.

• Instead, they are part of the Standard C Library.
• A collection of functions and macros

that must be implemented by any ANSI standard implementation.

• Automatically linked with every executable.

• Implementation depends on processor, operating system, etc.,
but interface is standard.

• Since they are not part of the language,
compiler must be told about function interfaces.

• Standard header files are provided,
which contain declarations of functions, variables, etc.

18-63

Basic I/O Functions
The standard I/O functions are declared in the
<stdio.h> header file.

Function Description
putchar Displays an ASCII character to the screen.

getchar Reads an ASCII character from the keyboard.

printf Displays a formatted string,

scanf Reads a formatted string.

fopen Open/create a file for I/O.

fprintf Writes a formatted string to a file.

fscanf Reads a formatted string from a file.

22

Recursion

17-65

n
i

1
Mathematical Definition:
RunningSum(1) = 1
RunningSum(n) =

n + RunningSum(n-1)

Recursive Function:
int RunningSum(int n) {

if (n == 1)
return 1;

else
return n + RunningSum(n-1);

}

What is Recursion?
A recursive function is one that solves its task
by calling itself on smaller pieces of data.

• Similar to recurrence function in mathematics.

• Like iteration -- can be used interchangeably;
sometimes recursion results in a simpler solution.

Example: Running sum ()

17-66

High-Level Example: Binary Search
Given a sorted set of exams, in alphabetical order,
find the exam for a particular student.

1. Look at the exam halfway through the pile.

2. If it matches the name, we're done;
if it does not match, then...

3a. If the name is greater (alphabetically), then
search the upper half of the stack.

3b. If the name is less than the halfway point, then
search the lower half of the stack.

23

17-67

Binary Search: Pseudocode
Pseudocode is a way to describe algorithms without
completely coding them in C.

FindExam(studentName, start, end)
{

halfwayPoint = (end + start)/2;
if (end < start)

ExamNotFound(); /* exam not in stack */
else if (studentName == NameOfExam(halfwayPoint))

ExamFound(halfwayPoint); /* found exam! */
else if (studentName < NameOfExam(halfwayPoint))

/* search lower half */
FindExam(studentName, start, halfwayPoint - 1);

else /* search upper half */
FindExam(studentName, halfwayPoint + 1, end);

}

