Chapter 15
Debugging

Debugging with High Level Languages

Same goals as low-level debugging
« Examine and set values in memory
* Execute portions of program
« Stop execution when (and where) desired

Want debugging tools to operate on
high-level language constructs
« Examine and set variables, not memory locations

 Trace and set breakpoints on
statements and function calls, not instructions

 ...but also want access to low-level tools when needed

15-2

Types of Errors

Syntactic Errors
* Input code is not legal
« Caught by compiler (or other translation mechanism)

Semantic Errors
* Legal code, but not what programmer intended
* Not caught by compiler, because syntax is correct

Algorithmic Errors
* Problem with the logic of the program

 Program does what programmer intended,
but it doesn't solve the right problem

15-3

Syntactic Errors

Common errors:
* missing semicolon or brace
* mis-spelled type in declaration

One mistake can cause an avalanche of errors
* because compiler can't recover and gets confused

main () { missing semicolon
int 1 €
int j;
for (i = 0; i <= 10; i++) {
=i * 7;
printf("%d x 7 = %d\n", i, 3J);
}

15-4

Semantic Errors

Common Errors
« Missing braces to group statements together
Confusing assignment with equality
Wrong assumptions about operator precedence, associativity

Wrong limits on for-loop counter
Uninitialized variables

n _ missing braces,
main () so printf not part of if
int 1
int j; ‘e/////,
for (1 = 0; 1 <= 10; i++)
j=41i%*7;

printf("%$d x 7 = %d\n", i, j);

15-5

Algorithmic Errors

Design is wrong,
so program does not solve the correct problem

Difficult to find

 Program does what we intended

* Problem might not show up until many runs of program
Maybe difficult to fix

 Have to redesign, may have large impact on program code

Classic example: Y2K bug
« only allow 2 digits for year, assuming 19

15-6

Debugging Techniques

Ad-Hoc
* Insert printf statements to track control flow and values

« Code explicitly checks for values out of expected range, etc.
« Advantage:
»No special debugging tools needed

« Disadvantages:
» Requires intimate knowledge of code and expected values

» Frequent re-compile and execute cycles
» Inserted code can be buggy

Source-Level Debugger
« Examine and set variable values
* Tracing, breakpoints, single-stepping on source-code statements

15-7

Source-Level Debugger

@AIISum.c - Source Window 7 7 _=_|gj_>gj
File Run Yiew Control Preferences Help
% @}@{?*{}‘ﬂ}@lﬁﬁi& ﬁ%\l 6x4016a0 14 = & &
1 #include <stdio.h> =i
2
3 int AllSum{int n); . .
4 main window
5 int main() .
= 64 of Cygwin
= 7 int in; /* Input value =/ .
8 int sum; /% Value of 1+2+3+...+n x/ version of gdb
9
108 do {
- 11 printf{"Input a number: ");
- 12 scanf{"%d", &in);
13
= 14 if (in > 0) (
- 15 sum = AllSum{in);
- 16 printf{"The AllSum of %d is %d\n", in, sum);
17 b3
- 18 ¥ while (in > 8);
- 19 3
20
21 int AllSum{int n)
= 22 {
- 23 int f; /% Iteration count =/ 1=
24 int result; /* Result to be returned =/
25
- 26 for (i=1; i<=n; i++) /% This loop calculates sum =/
- 27 result = result + i; :J
IProgram stopped at line 14
[A11Sum.c v| |main ~| |SOURCE ~| | 15-8

Source-Level Debugging Techniques

Breakpoints
« Stop when a particular statement is reached
« Stop at entry or exit of a function

« Conditional breakpoints:
Stop if a variable is equal to a specific value, etc.

 Watchpoints:
Stop when a variable is set to a specific value

Single-Stepping
« Execute one statement at a time
« Step "into" or step "over" function calls
» Step into: next statement is first inside function call
» Step over: execute function without stopping
» Step out: finish executing current function
and stop on exit

LC-3 software also provides a similar capability

15-9

