
Chapter 15

Debugging



15-2

Debugging with High Level Languages

Same goals as low-level debugging

• Examine and set values in memory

• Execute portions of program

• Stop execution when (and where) desired

Want debugging tools to operate on

high-level language constructs

• Examine and set variables, not memory locations

• Trace and set breakpoints on

statements and function calls, not instructions

• ...but also want access to low-level tools when needed



15-3

Types of Errors

Syntactic Errors

• Input code is not legal

• Caught by compiler (or other translation mechanism)

Semantic Errors

• Legal code, but not what programmer intended

• Not caught by compiler, because syntax is correct

Algorithmic Errors

• Problem with the logic of the program

• Program does what programmer intended, 

but it doesn't solve the right problem



15-4

Syntactic Errors

Common errors:

• missing semicolon or brace

• mis-spelled type in declaration

One mistake can cause an avalanche of errors

• because compiler can't recover and gets confused 

main () {

int i

int j;

for (i = 0; i <= 10; i++) {

j = i * 7;

printf("%d x 7 = %d\n", i, j);

}

}

missing semicolon



15-5

Semantic Errors

Common Errors

• Missing braces to group statements together

• Confusing assignment with equality

• Wrong assumptions about operator precedence, associativity

• Wrong limits on for-loop counter

• Uninitialized variables

h
main () {

int i

int j;

for (i = 0; i <= 10; i++) 

j = i * 7;

printf("%d x 7 = %d\n", i, j);

}

missing braces,

so printf not part of if



15-6

Algorithmic Errors

Design is wrong,

so program does not solve the correct problem

Difficult to find

• Program does what we intended

• Problem might not show up until many runs of program

Maybe difficult to fix

• Have to redesign, may have large impact on program code

Classic example: Y2K bug

• only allow 2 digits for year, assuming 19__



15-7

Debugging Techniques

Ad-Hoc

• Insert printf statements to track control flow and values

• Code explicitly checks for values out of expected range, etc.

• Advantage:

No special debugging tools needed

• Disadvantages:

Requires intimate knowledge of code and expected values

Frequent re-compile and execute cycles

Inserted code can be buggy

Source-Level Debugger

• Examine and set variable values

• Tracing, breakpoints, single-stepping on source-code statements



15-8

Source-Level Debugger

main window

of Cygwin

version of gdb



15-9

Source-Level Debugging Techniques

Breakpoints

• Stop when a particular statement is reached

• Stop at entry or exit of a function

• Conditional breakpoints:

Stop if a variable is equal to a specific value, etc.

• Watchpoints:

Stop when a variable is set to a specific value

Single-Stepping

• Execute one statement at a time

• Step "into" or step "over" function calls

Step into: next statement is first inside function call

Step over: execute function without stopping

Step out: finish executing current function

and stop on exit

LC-3 software also provides a similar capability


