
Chapter 13

Control

Structures

13-2

Control Structures

Conditional

• making a decision about which code to execute,

based on evaluated expression

• if

• if-else

• switch

Iteration

• executing code multiple times,

ending based on evaluated expression

• while

• for

• do-while

13-3

If

if (condition)

action; condition

action

T

F

Condition is a C expression,
which evaluates to TRUE (non-zero) or FALSE (zero).
Action is a C statement,
which may be simple or compound (a block).

13-4

Example If Statements

if (x <= 10)

y = x * x + 5;

if (x <= 10) {

y = x * x + 5;

z = (2 * y) / 3;

}

if (x <= 10)

y = x * x + 5;

z = (2 * y) / 3;

compound statement;
both executed if x <= 10

only first statement is conditional;
second statement is
always executed

13-5

More If Examples

if (0 <= age && age <= 11)

kids += 1;

if (month == 4 || month == 6 ||

month == 9 || month == 11)

printf(“The month has 30 days.\n”);

if (x = 2)

y = 5;

This is a common programming error (= instead of ==),

not caught by compiler because it’s syntactically correct.

always true,
so action is always executed!

13-6

If’s Can Be Nested

if (x == 3)

if (y != 6) {

z = z + 1;

w = w + 2;

}

if ((x == 3) && (y != 6)) {

z = z + 1;

w = w + 2;

}

is the same as...

13-7

If-else

if (condition)

action_if;

else

action_else;

condition

action_if action_else

T F

Else allows choice between
two mutually exclusive actions without re-testing condition.

13-8

Matching Else with If

Else is always associated with closest unassociated if.

if (x != 10)

if (y > 3)

z = z / 2;

else

z = z * 2;

if (x != 10) {

if (y > 3)

z = z / 2;

else

z = z * 2;

}

is the same as...

if (x != 10) {

if (y > 3)

z = z / 2;

}

else

z = z * 2;

is NOT the same as...

13-9

Chaining If’s and Else’s

if (month == 4 || month == 6 || month == 9 ||

month == 11)

printf(“Month has 30 days.\n”);

else if (month == 1 || month == 3 ||

month == 5 || month == 7 ||

month == 8 || month == 10 ||

month == 12)

printf(“Month has 31 days.\n”);

else if (month == 2)

printf(“Month has 28 or 29 days.\n”);

else

printf(“Don’t know that month.\n”);

13-10

While

while (test)

loop_body; test

loop_body

T

F

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

13-11

Infinite Loops

The following loop will never terminate:

x = 0;

while (x < 10)

printf(“%d ”, x);

Loop body does not change condition,

so test never fails.

This is a common programming error

that can be difficult to find.

13-12

For

for (init; end-test; re-init)

statement
init

test

loop_body

re-init

F

T

Executes loop body as long as
test evaluates to TRUE (non-zero).
Initialization and re-initialization
code includedin loop statement.

Note: Test is evaluated before executing loop body.

13-13

Example For Loops
/* -- what is the output of this loop? -- */

for (i = 0; i <= 10; i ++)

printf("%d ", i);

/* -- what does this one output? -- */

letter = 'a';

for (c = 0; c < 26; c++)

printf("%c ", letter+c);

/* -- what does this loop do? -- */

numberOfOnes = 0;

for (bitNum = 0; bitNum < 16; bitNum++) {

if (inputValue & (1 << bitNum))

numberOfOnes++;

}

13-14

Nested Loops

Loop body can (of course) be another loop.

/* print a multiplication table */

for (mp1 = 0; mp1 < 10; mp1++) {

for (mp2 = 0; mp2 < 10; mp2++) {

printf(“%d\t”, mp1*mp2);

}

printf(“\n”);

}

Braces aren’t necessary,
but they make the code easier to read.

13-15

Another Nested Loop

The test for the inner loop depends on the

counter variable of the outer loop.

for (outer = 1; outer <= input; outer++) {

for (inner = 0; inner < outer; inner++) {

sum += inner;

}

}

13-16

For vs. While

In general:

For loop is preferred for counter-based loops.

• Explicit counter variable

• Easy to see how counter is modified each loop

While loop is preferred for sentinel-based loops.

• Test checks for sentinel value.

Either kind of loop can be expressed as the other,

so it’s really a matter of style and readability.

13-17

Do-While

do

loop_body;

while (test);

loop_body

test
T

F

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated after executing loop body.

13-18

Problem Solving in C

Stepwise Refinement

• as covered in Chapter 6

...but can stop refining at a higher level of abstraction.

Same basic constructs

• Sequential -- C statements

• Conditional -- if-else, switch

• Iterative -- while, for, do-while

13-19

Problem 1: Calculating Pi

Calculate  using its series expansion.

User inputs number of terms.

 


 

12

4
)1(

7

4

5

4

3

4
4 1

n

n

Start

Initialize

Get Input

Evaluate
Series

Output
Results

Stop

13-20

Pi: 1st refinement

Start

Initialize

Get Input

Evaluate
Series

Output
Results

Stop

Initialize
iteration count

count<terms

Evaluate
next term

count = count+1

for loop
F

T

13-21

Pi: 2nd refinement

Initialize
iteration count

count<terms

Evaluate
next term

count = count+1

F

T

count
is odd

subtract term add term

add term

if-else

FT

13-22

Pi: Code for Evaluate Terms

for (count=0; count < numOfTerms; count++) {

if (count % 2) {

/* odd term -- subtract */

pi -= 4.0 / (2 * count + 1);

}

else {

/* even term -- add */

pi += 4.0 / (2 * count + 1);

}

Note: Code in text is slightly different,
but this code corresponds to equation.

13-23

Pi: Complete Code
#include <stdio.h>

main() {

double pi = 0.0;

int numOfTerms, count;

printf("Number of terms (must be 1 or larger) : ");

scanf("%d", &numOfTerms);

for (count=0; count < numOfTerms; count++) {

if (count % 2) {

pi -= 4.0 / (2 * count + 1); /* odd term -- subtract */

}

else {

pi += 4.0 / (2 * count + 1); /* even term -- add */

}

printf("The approximate value of pi is %f\n", pi);

return 0;

}

13-24

Problem 2: Finding Prime Numbers

Print all prime numbers less than 100.

• A number is prime if its only divisors are 1 and itself.

• All non-prime numbers less than 100 will have a divisor

between 2 and 10.

Start

Stop

Initialize

Print primes

Skip Prime number
example

13-25

Primes: 1st refinement

Start

Stop

Initialize

Print primes

Initialize
num = 2

num < 100

Print num
if prime

num = num + 1

F

T

13-26

Primes: 2nd refinement

Initialize
num = 2

num < 100

Print num
if prime

num = num + 1

F

T

Divide num by
2 through 10

no
divisors?

Print num

F

T

13-27

Primes: 3rd refinement

Divide num by
2 through 10

no
divisors?

Print num

F

T

Initialize
divisor = 2

divisor <= 10

Clear flag if
num%divisor > 0

divisor =
divisor + 1

F

T

13-28

Primes: Using a Flag Variable

To keep track of whether number was divisible,

we use a "flag" variable.

• Set prime = TRUE, assuming that this number is prime.

• If any divisor divides number evenly,

set prime = FALSE.

Once it is set to FALSE, it stays FALSE.

• After all divisors are checked, number is prime if

the flag variable is still TRUE.

Use macros to help readability.

#define TRUE 1

#define FALSE 0

13-29

Primes: Complete Code
#include <stdio.h>

#define TRUE 1

#define FALSE 0

main () {

int num, divisor, prime;

/* start with 2 and go up to 100 */

for (num = 2; num < 100; num ++) {

prime = TRUE; /* assume num is prime */

/* test whether divisible by 2 through 10 */

for (divisor = 2; divisor <= 10; divisor++)

if (((num % divisor) == 0) && (num != divisor))

prime = FALSE; /* not prime */

if (prime) /* if prime, print it */

printf("The number %d is prime\n", num);

}

}

Optimization: Could put
a break here to avoid some work.

(Section 13.5.2)

13-30

Switch

switch (expression) {

case const1:

action1; break;

case const2:

action2; break;

default:

action3;

}

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T

F

F

Alternative to long if-else chain.
If break is not used, then
case "falls through" to the next.

Continue here

13-31

Switch Example
/* same as month example for if-else */

switch (month) {

case 4:

case 6:

case 9:

case 11:

printf(“Month has 30 days.\n”);

break;

case 1:

case 3:

/* some cases omitted for brevity...*/

printf(“Month has 31 days.\n”);

break;

case 2:

printf(“Month has 28 or 29 days.\n”);

break;

default:

printf(“Don’t know that month.\n”);

}

13-32

More About Switch

Case expressions must be constant.

case i: /* illegal if i is a variable */

If no break, then next case is also executed.

switch (a) {

case 1:

printf(“A”);

case 2:

printf(“B”);

default:

printf(“C”);

}

If a is 1, prints “ABC”.
If a is 2, prints “BC”.

Otherwise, prints “C”.

13-33

Problem 3: Searching for Substring

Have user type in a line of text (ending with linefeed)

and print the number of occurrences of "the".

Reading characters one at a time

• Use the getchar() function -- returns a single character.

Don't need to store input string;

look for substring as characters are being typed.

• Similar to state machine:

based on characters seen, move toward success state

or move back to start state.

• Switch statement is a good match to state machine.

13-34

Substring: State machine to flow chart

matched
't'

matched
'th'

matched
'the'

't'

'h'

'e'

't'

't'

't'

no
match

other

other

other

other

increment
count

read char

match = 0

match = 1

match = 2

if 't', match=1

if 'h', match=2
if 't', match=1
else match=0

if 'e', count++
and match = 0
if 't', match=1
else match=0

T

T

T

F

F

F

13-35

Substring: Code (Part 1)
#include <stdio.h>

main() {

char key; /* input character from user */

int match = 0; /* keep track of characters matched */

int count = 0; /* number of substring matches */

/* Read character until newline is typed */

while ((key = getchar()) != '\n') {

/* Action depends on number of matches so far */

switch (match) {

case 0: /* starting - no matches yet */

if (key == 't')

match = 1;

break;

13-36

Substring: Code (Part 2)

case 1: /* 't' has been matched */

if (key == 'h')

match = 2;

else if (key == 't')

match = 1;

else

match = 0;

break;

13-37

Substring: Code (Part 3)

case 2: /* 'th' has been matched */

if (key == 'e') {

count++; /* increment count */

match = 0; /* go to starting point */

}

else if (key == 't') {

match = 1;

else

match = 0;

break;

}

}

printf("Number of matches = %d\n", count);

}

13-38

Break and Continue

break;

• used only in switch statement or iteration statement

• passes control out of the “smallest” (loop or switch) statement

containing it to the statement immediately following

• usually used to exit a loop before terminating condition occurs

(or to exit switch statement when case is done)

continue;

• used only in iteration statement

• terminates the execution of the loop body for this iteration

• loop expression is evaluated to see whether another

iteration should be performed

• if for loop, also executes the re-initializer

13-39

Example

What does the following loop do?

for (i = 0; i <= 20; i++) {

if (i%2  0) continue;

printf("%d ", i);

}

What would be an easier way to write this?

What happens if break instead of continue?

Looking Ahead

A glimpse of what is coming.

• Functions

• Pointers, arrays and strings

• C file I/o

12-40

Slides after this skipped: LC-3 Implementation

Slides after this skipped

We will come back to these after we have seen LC-3

12-41

13-42

Generating Code for If-Else

if (x) {

y++;

z--;

}

else {

y--;

z++;

}

LDR R0, R5, #0

BRz ELSE

; x is not zero
LDR R1, R5, #-1 ; incr y

ADD R1, R1, #1

STR R1, R5, #-1

LDR R1, R5, #02 ; decr z

ADD R1, R1, #1

STR R1, R5, #-2

JMP DONE ; skip else code

; x is zero
ELSE LDR R1, R5, #-1 ; decr y

ADD R1, R1, #-1

STR R1, R5, #-1

LDR R1, R5, #-2 ; incr z

ADD R1, R1, #1

STR R1, R5, #-2

DONE ... ; next statement

13-43

Generating Code for While

x = 0;

while (x < 10) {

printf(“%d ”, x);

x = x + 1;

}

AND R0, R0, #0

STR R0, R5, #0 ; x = 0

; test
LOOP LDR R0, R5, #0 ; load x

ADD R0, R0, #-10

BRzp DONE

; loop body
LDR R0, R5, #0 ; load x

...

<printf>

...

ADD R0, R0, #1 ; incr x

STR R0, R5, #0

JMP LOOP ; test again

DONE ; next statement

13-44

Generating Code for For

for (i = 0; i < 10; i++)

printf(“%d ”, i);

; init
AND R0, R0, #0

STR R0, R5, #0 ; i = 0

; test
LOOP LDR R0, R5, #0 ; load i

ADD R0, R0, #-10

BRzp DONE

; loop body
LDR R0, R5, #0 ; load i

...

<printf>

...

; re-init
ADD R0, R0, #1 ; incr i

STR R0, R5, #0

JMP LOOP ; test again

DONE ; next statement

This is the same
as the while example!

