

Chapter 2 Bits, Data Types, and Operations

How do we represent data in a computer?

At the lowest level, a computer is an electronic machine. • works by controlling the flow of electrons

Easy to recognize two conditions:

- 1. presence of a voltage we'll call this state "1"
- 2. absence of a voltage we'll call this state "0"

Could base state on value of voltage,

but control and detection circuits more complex.

compare turning on a light switch to measuring or regulating voltage

2-2

- Numbers signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Logical true, false
- Text characters, strings, ...
- Instructions (binary) LC-3, x-86 ..
- Images jpeg, gif, bmp, png ...
- Sound mp3, wav..
- ...

Data type:

• representation and operations within the computer We'll start with numbers...

•

2-4

Unsigned Integers

Non-positional notation

- could represent a number ("5") with a string of ones ("11111")
- problems?

Weighted positional notation

- like decimal numbers: "329"
- "3" is worth 300, because of its position, while "9" is only worth 9

 $329 \xrightarrow{most} 10^{1} 10^{1} 10^{0} \qquad 2^{2} 2^{1} 2^{1} 2^{0}$ $3x100 + 2x10 + 9x1 = 329 \qquad 1x4 + 0x2 + 1x1 = 5$ 2-5

An <i>n</i> -bit unsigned in from 0 to 2 ⁿ -1.	nteg	er re	epre	esents 2 ⁿ values:	
	2 ²	2 ¹	2 ⁰		
	0	0	0	0	
	0	0	1	1	
	0	1	0	2	
	0	1	1	3	
	1	0	0	4	
	1	0	1	5	
	1	1	0	6	
	1	1	1	7	

Signed Integers

With n bits, we have 2ⁿ distinct values.

- assign about half to positive integers (1 through 2ⁿ⁻¹) and about half to negative (- 2ⁿ⁻¹ through -1)
- that leaves two values: one for 0, and one extra

Positive integers

• just like unsigned – zero in most significant (MS) bit 00101 = 5

Negative integers: formats

- sign-magnitude set MS bit to show negative, other bits are the same as unsigned 10101 = -5
- one's complement flip every bit to represent negative 11010 = -5
- in either case, MS bit indicates sign: 0=positive, 1=negative

2-8

Two's Complement

Problems with sign-magnitude and 1's complement

two representations of zero (+0 and -0)

arithmetic circuits are complex

- How to add two sign-magnitude numbers? – e.g., try 2 + (-3)
- How to add to one's complement numbers?
 e.g., try 4 + (-3)

MS Ra	i bit i nge (s sig of ar	gn b 1 n-b	it – i bit nu	ent Si t has imbei numbe	weig r: -2r	ght —2 1-1 thr	2 ⁿ⁻¹ . oug	h 2 ⁿ⁻			oart.
	-2 ³	2 ²	2 ¹	20			-23	2 ²	2 ¹	20		
	0	0	0	0	0		1	0	0	0	-8	
	0	0	0	1	1		1	0	0	1	-7	
	0	0	1	0	2		1	0	1	0	-6	
	0	0	1	1	3		1	0	1	1	-5	
	0	1	0	0	4		1	1	0	0	-4	
	0	1	0	1	5		1	1	0	1	-3	
	0	1	1	0	6		1	1	1	0	-2	
	0	1	1	1	7		1	1	1	1	-1	
												2-13

First Method: Division 1. Find magnitude of decime	al number. (A	lways	positive.)	
 Divide by two - remainde Keep dividing by two unt writing remainders from 1 Append a zero as the MS if original number was ne 	il answer is ze right to left. 5 bit;	ero,		nt.
X = 104 _{ten}	104/2 = 52/2 = 26/2 =	26 r0 13 r0	bit 2	
	13/2 = 6/2 = 3/2 =	3 r0	bit 4	
X = 01101000 _{two}	6/2 =	3 r0 1 r1	bit 4 bit 5	

Γ

Converting Decim	hal to Binary (2' s	C)	n	2 ⁿ				
Second Method: Sub	tract Powers of Two		0	1				
1. Find magnitude o	f decimal number		1	2				
•			2	4				
2. Subtract largest p			3	8				
less than or equa	I to number.		4	16				
3. Put a one in the c	orresponding bit pos	sition.	5	32 64				
+. Reep subtracting	until result is zero.		7	128				
			7 8 9	128 256 512				
5. Append a zero as		mplemen	, 8 9	256 512				
5. Append a zero as	MS bit;	bit 6	, 8 9	256 512				
5. Append a zero as if original was ne	MS bit; gative, take two's co	•	, 8 9	256 512				
5. Append a zero as if original was ne	MS bit; gative, take two's co 104 - 64 = 40	bit 6	, 8 9	256 512				
5. Append a zero as if original was ne	MS bit; gative, take two's co 104 - 64 = 40 40 - 32 = 8 8 - 8 = 0	bit 6 bit 5	, 8 9	256 512				

Operations: Arithmetic and Logical Recall: a data type includes representation and operations. We now have a good representation for signed integers, so let's look at some arithmetic operations: Addition Subtraction Sign Extension We'll also look at overflow conditions for addition.

Multiplication, division, etc., can be built from these basic operations. Logical operations are also useful:

- AND OR
- NOT

2-18

Subtraction

Г

L

Ciam Estancian			
Sign Extension			
To add two numbers with the same number		present them	
If we just pad with ze	eroes on the	left:	
4-bit		8-bit	
0100 (4)	00000100	(still 4)	
1100 (-4)	00001100	(12, not -4)	
Instead, replicate the	MS bit the	e sign bit:	
4-bit		8-bit	
0100 (4)	00000100	(still 4)	
1100 (-4)	11111100	(still -4)	
			2-21

If operands are too big, ther as an <i>n</i> -bit 2's comp number		be represented
01000 (8)	11000	(-8)
+_01001 (9)	+10111	(-9)
10001 (-15)	01111	(+15)
We have overflow if: • signs of both operands are t • sign of sum is different. Another test easy for hard • carry into MS bit does not easy	lware:	

Г

Α	в	A AND B	Α	в	A OR B	Α	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1	,	
1	1	1	1	1	1		

 useful for clearing bits > AND with zero = 0 > AND with one = no change 	AND_	11000101 00001111 00000101	
OR • useful for setting bits ≻OR with zero = no change ≻OR with one = 1	OR_	11000101 00001111 11001111	
NOT • unary operation one argument • flips every bit	NOT_	11000101 00111010	

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.

• fewer digits -- four bits per hex digit

- less error prone -- easy to corrupt long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	1010 A	
0011	3	3	1011	в	11
0100	4	4	1100	с	12
0101	5	5 1101 E		D	13
0110	6	6	1110	Е	14
0111	7	7	1111	F	15

Decimal to float32

- 1. Change decimal number to binary
- 2. Move radix point so there is only a single 1 bit to the left of the radix point.
 - Every position moved to the left increases the exponent size by one.
 - Every position moved to the right decreases the exponent size by one.
 - The initial exponent is 0.
- 3. Remove leading 1 from resulting binary number and store this number in bits 0-22.
- 4. Add 127 to exponent and store binary representation of exponent in bits 23-30
- 5. Store sign in bit 31, 1 for negative, 0 for positive.

2-30

Float 32 to decimal

- 1. Check bit MSB (31) for sign, 1 negative, 0 positive
- 2. Extract bits 30 23, and find their value in binary then subtract 127 to get the exponent
- 3. Extract bits 22 0 and add implicit bit with value 1 to location 23 to get the fractional part
- 4. Change value of exponent to 0 by shifting radix point of fractional part right to reduce exponent and left to increase exponent
- 5. Convert resulting binary number to decimal

2-31

Floating-Point Operations

Will regular 2' s complement arithmetic work for Floating Point numbers? (*Hint*: In decimal, how do we compute 3.07 x 10¹² + 9.11 x 10⁸? Need to work with exponents)

2-32

٦

Text: ASCII Characters												
ASCII: Maps	s 128 c	hara	cter	s to	7-	bit	co	de.				
 both print 	table an	d nor	n-prir	table	e (E	SC,	, DI	EL,)	cha	aracters	s
	10 dle					50			1	70	P	
	11 dc1		31			51		61			q	
	12 dc2		32			52		62		72	r	
	13 dc3		33			53				73		
	14 dc4		34 4			54		64			t	
	15 nak :		35			55		65			u	
	16 syn		36			56	v	66	f	76	v	
07 bel	17 etb	27 '	37 '			57	W	67	g	77	w	
08 bs	18 can	28 (38 8			58	х	68	h	78	x	
09 ht	19 em 3	29)	39	49	I	59	Y	69	i	79	У	
0a nl	1a sub	2a *	3a	4a	J	5a	z	6a	j	7a	z	
0b vt	1b esc	2b +	3ь	4b	к	5b	[6b	k	7ь	{	
0c np	1c fs	2c ,	3c •	4c	L	5c	\	6c	1	7c	1	
0d cr	1d gs	2d -	3d =	= 4d	м	5d	1	6d	m	7d	}	
0e so	le rs	2e .	3e 💈	• 4e	N	5e	^	6e	n	7e	~	
Of si	lf us	2f /	3f 1	4f	0	5f	_	6f	0	7f	del	
							_					2-33

Interesting Properties of ASCII Code

What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?

What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?

Given two ASCII characters, how do we tell which comes first in alphabetical order?

Unicode: 128 characters are not enough. 1990s Unicode was standardized, Java used Unicode.

No new operations -- integer arithmetic and logic.

2-34

Other Data Types

Text strings

· sequence of characters, terminated with NULL (0) • typically, no hardware support

Image

- · array of pixels
 - > monochrome: one bit (1/0 = black/white)
 - > color: red, green, blue (RGB) components (e.g., 8 bits each)
 - ≻ other properties: transparency
- · hardware support:
 - > typically none, in general-purpose processors
 - > MMX -- multiple 8-bit operations on 32-bit word

Sound

· sequence of fixed-point numbers

2-35

LC-3 Data Types

Some data types are supported directly by the instruction set architecture.

For LC-3, there is only one hardware-supported data type: • 16-bit 2's complement signed integer

- Operations: ADD, AND, NOT

Other data types are supported by interpreting 16-bit values as logical, text, fixed-point, etc., in the software that we write.