
\qquad
\qquad
\qquad

How do we represent data in a computer?

\qquad
At the lowest level, a computer is an electronic machine.

- works by controlling the flow of electrons \qquad
Easy to recognize two conditions: \qquad

1. presence of a voltage - we'll call this state " 1 "
2. absence of a voltage - we' ll call this state " 0 "

Could base state on value of voltage, but control and detection circuits more complex.

- compare turning on a light switch to
measuring or regulating voltage

Computer is a binary digital system. \qquad

Digital system:
• finite number of symbols

Digital Values \rightarrow

Basic unit of information is the binary digit, or bit.
Values with more than two states require multiple bits.

- A collection of two bits has four possible states:

00, 01, 10, 11

- A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has 2^{n} possible states.

What kinds of data do we need to represent?

- Numbers - signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Logical - true, false
- Text - characters, strings, ...
- Instructions (binary) - LC-3, x-86 ..
- Images - jpeg, gif, bmp, png ...
- Sound - mp3, wav..
- ...

Data type:

- representation and operations within the computer

We' II start with numbers...

Unsigned Integers (cont.)
An n-bit unsigned integer represents 2^{n} values: from 0 to 2^{n-1}.

2^{2}	2^{1}	2^{0}	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Signed Integers

With n bits, we have 2^{n} distinct values.

- assign about half to positive integers (1 through 2^{n-1}) and about half to negative ($-2^{\mathrm{n}-1}$ through -1)
- that leaves two values: one for 0 , and one extra

Positive integers

- just like unsigned - zero in most significant (MS) bit $00101=5$
Negative integers: formats
- sign-magnitude - set MS bit to show negative,
other bits are the same as unsigned
$10101=-5$
- one's complement - flip every bit to represent negative $11010=-5$
- in either case, MS bit indicates sign: 0=positive, 1=negative

Two's Complement

Problems with sign-magnitude and 1' s complement

- two representations of zero (+0 and -0)
- arithmetic circuits are complex
$>$ How to add two sign-magnitude numbers?

$$
\text { - e.g., try } 2+(-3)
$$

$>$ How to add to one's complement numbers? -e.g., try 4 + (-3)

Two' s Complement

Two's complement representation developed to make circuits easy for arithmetic.
for each positive number (X), assign value to its negative (-X), such that $\mathrm{X}+(-\mathrm{X})=0$ with "normal" addition, ignoring carry out

00101	(5)	
+11011	(-5)	
00000	$+0)$	(9)
00000	(0)	

Two' s Complement Representation \qquad If number is positive or zero,

- normal binary representation, zeroes in upper bit(s)

If number is negative,

- start with positive number
- flip every bit (i.e., take the one's complement)
- then add one

$$
\begin{aligned}
& 00101 \text { (5) } 01001 \text { (9) } \\
& 11010 \text { (1's comp) (1's comp) } \\
& +\quad 1 \quad+\quad 1 \\
& 11011 \text { (-5) (-9) }
\end{aligned}
$$

Two' s Complement Shortcut

To take the two' s complement of a number:

- copy bits from right to left until (and including) the first " 1 "
- flip remaining bits to the left

Two's Complement Signed Integers

MS bit is sign bit - it has weight -2^{n-1}.
Range of an n-bit number: - $\mathbf{2}^{\mathrm{n}-1}$ through $\mathbf{2}^{\mathrm{n-1}}-1$.

- The most negative number $\left(-2^{n-1}\right)$ has no positive counterpart.

-2^{3}	2^{2}	2^{1}	2^{0}		-2^{3}	2^{2}	2^{1}	2^{0}	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

\qquad
\qquad
\qquad
\qquad

Converting Binary (2's C) to Decimal \qquad

1. If leading bit is one, take two' s complement to get a positive number.
2. Add powers of 2 that have " 1 " in the corresponding bit positions.
3. If original number was negative, add a minus sign.

$$
\begin{aligned}
\mathrm{X} & =01101000_{\mathrm{two}} \\
& =2^{6}+2^{5}+2^{3}=64+32+8 \\
& =104_{\mathrm{ten}}
\end{aligned}
$$

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
1	102
0	4

\qquad
\qquad
\qquad
\qquad
\qquad
Assuming 8-bit 2 's complement numbers.

Converting Decimal to Binary (2's C)

First Method: Division
. Find magnitude of decimal number. (Always positive.)
. Divide by two - remainder is least significant bit.
\qquad
. Keep dividing by two until answer is zero,
writing remainders from right to left. \qquad
. Append a zero as the MS bit,
if original number was negative, take two's complement.

$\mathrm{X}=104_{\text {ten }}$	$104 / 2$	$=52 \mathrm{ro}$	bit 0
$52 / 2$	$=26 \mathrm{rO}$	bit 1	
$26 / 2$	$=13 \mathrm{r}$	bit 2	
$13 / 2$	$=6 \mathrm{r} 1$	bit 3	
$6 / 2$	$=3 \mathrm{rO}$	bit 4	
$3 / 2$	$=1 \mathrm{r} 1$	bit 5	
$X=01101000_{\text {two }}$	$1 / 2$	$=0 \mathrm{r} 1$	bit 6

Converting Decimal to Binary (2's C)
Second Method: Subtract Powers of Two

1. Find magnitude of decimal number.
2. Subtract largest power of two less than or equal to number. \qquad
3. Put a one in the corresponding bit position.
\qquad
4. Append a zero as MS bit;
\qquad

X	$=104_{\text {ten }}$	$104-64$
	$=40$	bit 6
$40-32$	$=8$	bit 5
$8-8$	$=0$	bit 3

Operations: Arithmetic and Logical
 Recall:
 a data type includes representation and operations.
 We now have a good representation for signed integers, so let's look at some arithmetic operations:
 - Addition
 - Subtraction
 - Sign Extension
 We' Il also look at overflow conditions for addition.
 Multiplication, division, etc., can be built from these
 basic operations.
 Logical operations are also useful:
 - AND
 - OR
 - NOT

\qquad
\qquad

Addition

As we' ve discussed, 2' s comp. addition is just binary addition.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that sum fits in n-bit 2' s comp. representation

01101000	(104)		
11110000	(-16)		
01011000	(98)	$+\square$	(-10)
:---			
(-9)			
(-19)			

Assuming 8 -bit 2's complement numbers.

Subtraction

\qquad
Negate subtrahend (2nd no.) and add.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that difference fits in n-bit 2' s comp. representation \qquad

01101000	(104)	11110110	(-10)
00010000	(16)		(-9)
01101000	(104)	11110110	(-10)
+ 11110000	(-16)	+	(9)
01011000	(88)		(-1)

Assuming 8-bit 2's complement numbers.

```
Sign Extension
To add two numbers, we must represent them
with the same number of bits.
If we just pad with zeroes on the left:
\begin{tabular}{lll}
\(\frac{4 \text {-bit }}{0100}\) & & \\
1100 & 00000100 & \(\left.\frac{8 \text {-bit }}{\text { (stil1 }} 4\right)\) \\
\(1-4)\) & 00001100 & \((12\), not -4\()\)
\end{tabular}
Instead, replicate the MS bit -- the sign bit:
\begin{tabular}{lll}
\(\underline{4-b i t}^{\text {4-b) }}\) & 00000100 & \(\left.\frac{8 \text {-bit }}{\text { (still }} 4\right)\) \\
\(1100{ }_{\text {(-4) }}\) & 11111100 & (still -4)
\end{tabular}
```


Overflow

If operands are too big, then sum cannot be represented as an \boldsymbol{n}-bit 2' s comp number.

01000	(8)	11000
+01001	(-8)	
10001	$+-15)$	$+\frac{10111}{01111}$

We have overflow if:

- signs of both operands are the same, and - sign of sum is different.

Another test -- easy for hardware:

- carry into MS bit does not equal carry out

Logical Operations
Operations on logical TRUE or FALSE
• two states -- takes one bit to represent: TRUE=1, FALSE=0

A	B A AND B	A	B	A OR B	A	NOT A	
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

View \boldsymbol{n}-bit number as a collection of \boldsymbol{n} logical values

- operation applied to each bit independently

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.

- fewer digits -- four bits per hex digit
- less error prone -- easy to corrupt long string of 1's and 0 ' s

Binary	Hex	Decimal		Binary	Hex	Decimal
0000	0	0		1000	8	8
0001	1	1		1001	9	9
0010	2	2		1010	A	10
0011	3	3		1011	B	11
0100	4	4		1100	C	12
0101	5	5		1101	D	13
0110	6	6		1110	E	14
0111	7	7		1111	F	15

Converting from Binary to Hexadecimal \qquad Every four bits is a hex digit.

- start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Fractions: Fixed-Point \qquad
How can we represent fractions?

- Use a "binary point" to separate positive
from negative powers of two -- just like "decimal point."
\qquad
- 2' s comp addition and subtraction still work.
$>$ if binary points are aligned

$$
\begin{array}{l}2^{-1}=0.5 \\
2^{-2}=0.25 \\
2^{-3}=0.125\end{array}
$$

+| $00101000.10: 1 \quad(40.625)$ |
| :--- |
| +11111110.110 |
| 00100111.011 |
| (-1.25) |
| (39.375) |

No new operations -- same as integer arithmetic.

```
Very Large and Very Small: Floating-Point
Large values: 6.023 < 1023 -- requires 79 bits
Small values: 6.626 < 10-34 -- requires >110 bits
Use equivalent of "scientific notation": F x 2 }\mp@subsup{}{}{\textrm{E}
Need to represent F (fraction), E (exponent), and sign.
IEEE }754\mathrm{ Floating-Point Standard (32-bits):
```


Floating Point Example \qquad
Single-precision IEEE floating point number:

- Sign is 1 - number is negative.
- Exponent field is $01111110=126$ (decimal).
- Fraction is $0.100000000000 \ldots=0.5$ (decimal). \qquad
Value $=-1.5 \times 2^{(126-127)}=-1.5 \times 2^{-1}=-0.75$. \qquad
\qquad

Decimal to float32

1. Change decimal number to binary
2. Move radix point so there is only a single 1 bit to the \qquad left of the radix point.

- Every position moved to the left increases the exponent size by one.
- Every position moved to the right decreases the exponent size by one.
- The initial exponent is 0 .

3. Remove leading 1 from resulting binary number and store this number in bits $\mathbf{0 - 2 2}$.
4. Add 127 to exponent and store binary representation of exponent in bits 23-30
5. Store sign in bit 31, 1 for negative, 0 for positive.

Float 32 to decimal

1. Check bit MSB (31) for sign, 1 negative, 0 positive
2. Extract bits $30-23$, and find their value in binary then subtract 127 to get the exponent
3. Extract bits $22-0$ and add implicit bit with value 1 to location 23 to get the fractional part
4. Change value of exponent to 0 by shifting radix point of fractional part right to reduce exponent and left to increase exponent
5. Convert resulting binary number to decimal

Floating-Point Operations

\qquad
Will regular 2's complement arithmetic work for Floating Point numbers?
(Hint: In decimal, how do we compute $3.07 \times 10^{12}+9.11 \times 10^{8}$?
Need to work with exponents)

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

- both printable and non-printable (ESC, DEL, ...) characters \qquad

1 soh	11	dc 1	21	$!$	31	1	41	A	51	Q	61	a
ste	12 dc	71	q									

04 eot 14 dc 4	24	$\$$	34	4	44	D	54	T	64	d	74	t

05 enq	15 nak	25	$\%$	35	5	45	E	55	U	65	e	75	u
06 ack	16 syn	26	$\&$	36	6	46	F	56	V	66	f	76	V

7 bel 17 etb 27 , $37 \quad 7 \quad 47$ G 57 W 67 g 77 w

09 ht 19 em 29) 39949 I 59 y 69 i 79 y
0a nl 1a sub 2a * 3a : 4 a J 5 a Z 6 a j 7 a z
0 b vt 1 b esc $2 \mathrm{~b}+3 \mathrm{~b}$; 4 b K 5 b [6 b k 7 b 亿

Od cr 1d gs 2d - 3d = 4d m 5d $]$ 6d m 7d \}


```
Interesting Properties of ASCII Code
What is relationship between a decimal digit ('0', '1', ...)
and its ASCII code?
What is the difference between an upper-case letter
('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
Given two ASCII characters, how do we tell which comes first in alphabetical order?
Unicode: 128 characters are not enough. 1990s Unicode was standardized, Java used Unicode.

\section*{Other Data Types}

\section*{Text strings}
- sequence of characters, terminated with NULL (0)
- typically, no hardware support

\section*{Image}
- array of pixels
> monochrome: one bit ( \(1 / 0=\) black/white)
\(>\) color: red, green, blue (RGB) components (e.g., 8 bits each)
> other properties: transparency
\(\qquad\)
hardware support:
\(>\) typically none, in general-purpose processors \(\qquad\)
> MMX -- multiple 8 -bit operations on 32 -bit word
Sound
- sequence of fixed-point numbers

\section*{LC-3 Data Types}

Some data types are supported directly by the instruction set architecture.

For LC-3, there is only one hardware-supported data type:
- 16-bit 2's complement signed integer
- Operations: ADD, AND, NOT

Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, etc., in the software that we write.```

