
Storage Elements
&
Sequential Circuits

5-2

LC-3
Data Path
Revisited

Now Registers and
Memory

3-3

Combinational vs. Sequential
Combinational Circuit

• always gives the same output for a given set of inputs
Øex: adder always generates sum and carry,

regardless of previous inputs
Sequential Circuit

• stores information
• output depends on stored information (state) plus input

Øso a given input might produce different outputs,
depending on the stored information

• example: ticket counter
Øadvances when you push the button
Øoutput depends on previous state

• useful for building “memory” elements and “state machines”

Storage Elements
• Static: use a circuit with feedback to save a bit of

information
• flipflops
• Static memories

• Dynamic: Use charge at a node to represent a 1 or 0
• A cell in a dynamic memory
• Fewer transistors hence cheaper
• Need periodic refreshing, every few millisecs.

• Both are volatile.
• Not consideed here:

• ROM (read only memory): combinational
• Flash memory: semiconductor, but work like disks

4

3-5

R-S Latch: Simple Storage Element
R is used to “reset” or “clear” the element – set it to zero.
S is used to “set” the element – set it to one.

If both R and S are one, out could be either zero or one.
• “quiescent” state -- holds its previous value
• note: if a is 1, b is 0, and vice versa

1

0

1

1

1

1

0

0

1

1

0

0

1

1

3-6

Clearing the R-S latch
Suppose we start with output = 1, then change R to zero.

Output changes to zero.

Then set R=1 to “store” value in quiescent state.

1

0

1

1

1

1

0

0

1

0

1

0

0

0

1

1

3-7

Setting the R-S Latch
Suppose we start with output = 0, then change S to zero.

Output changes to one.

Then set S=1 to “store” value in quiescent state.

1

1

0

0

1

1

0

1

1

1

0

0

3-8

R-S Latch Summary
R = S = 1

• hold current value in latch
S = 0, R=1

• set value to 1
R = 0, S = 1

• set value to 0

R = S = 0
• both outputs equal one
• final state determined by electrical properties of gates
• Don’t do it!

3-9

Gated D-Latch
Two inputs: D (data) and WE (write enable)

• when WE = 1, latch is set to value of D
ØS = NOT(D), R = D

• when WE = 0, latch holds previous value
ØS = R = 1

3-10

Register
A register stores a multi-bit value.

• We use a collection of D-latches, all controlled by a common
WE.

• When WE=1, n-bit value D is written to register.

11/7/17
YKM 11

Flip-flops

D Flip-flop: a storage element, can be edge-
triggered (available in logisim)

Q
Q

Clock

D
D Next Q

0 0
1 1

Clock

Rising edge: input sampled

State Q is always available

11/7/17
YKM 12

Registers

A register is a row of
storage element.

Register with parallel load
with a Load control line

Clock is often implied

3-13

Representing Multi-bit Values
Number bits from right (0) to left (n-1)

• just a convention -- could be left to right, but must be consistent
Use brackets to denote range:
D[l:r] denotes bit l to bit r, from left to right

May also see A<14:9>,
especially in hardware block diagrams.

A = 0101001101010101

A[2:0] = 101A[14:9] = 101001

015

3-14

Memory
Now that we know how to store bits,
we can build a memory – a logical k × m array of
stored bits.

•••

k = 2n

locations

m bits

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)

3-15

22 x 3 Memory

address
decoder

word select word WE
address

write
enable

input bits

output bits

3-16

More Memory Details
This is a not the way actual memory is implemented.

• fewer transistors, much more dense,
relies on electrical properties

But the logical structure is very similar.
• address decoder
• word select line
• word write enable

Two basic kinds of RAM (Random Access Memory)
Static RAM (SRAM)

• fast, maintains data as long as power applied
Dynamic RAM (DRAM)

• slower but denser, bit storage decays – must be periodically
refreshed

Also, non-volatile memories: ROM, PROM, flash, …

3-17

Finite State Machines

3-18

State Machine
A general sequential circuit

• Combines combinational logic with storage
• “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Mealy type: general
Moore type: Output depends
only on state

3-19

Combinational vs. Sequential
Two types of “combination” locks

4 1 8 4
30

15

5

1020

25

Combinational
Success depends only on
the values, not the order in
which they are set.

Sequential
Success depends on
the sequence of values
(e.g, R-13, L-22, R-3).

3-20

State
The state of a system is a snapshot of
all the relevant elements of the system
at the moment the snapshot is taken.

Examples:
• The state of a basketball game can be represented by

the scoreboard.
ØNumber of points, time remaining, possession, etc.

• The state of a tic-tac-toe game can be represented by
the placement of X’s and O’s on the board.

3-21

State of Sequential Lock
Our lock example has four different states,
labelled A-D:

A: The lock is not open,
and no relevant operations have been performed.

B: The lock is not open,
and the user has completed the R-13 operation.

C: The lock is not open,
and the user has completed R-13, followed by L-22.

D: The lock is open.

3-22

State Diagram
Shows states and
actions that cause a transition between states.

State Table for the lock

Input Present
State

Next
State

Output/a
ction

R-32 A B -
Not R-32 A A -
L-22 B C -
Not L-22 B A -
R-3 C D -
Not R-3 C A -
R-13 D B Open
Not R-13 D A Open

23CS270 - Fall Semester 2015

3-24

Finite State Machine
A description of a system with the following components:

1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what determines each

external output value

Often described by a state diagram.
• Inputs trigger state transitions.
• Outputs are associated with each state (or with each transition).

3-25

The Clock
Frequently, a clock circuit triggers transition from
one state to the next.

At the beginning of each clock cycle,
state machine makes a transition,
based on the current state and the external inputs.

• Not always required. In lock example, the input itself triggers a transition.

“1”

“0”

time®One
Cycle

3-26

Implementing a Finite State Machine
Combinational logic

• Determine outputs and next state.
Storage elements

• Maintain state representation.

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Clock

3-27

Storage: Master-Slave Flipflop
A pair of gated D-latches,
to isolate next state from current state.

During 1st phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2nd phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

Skip: there are several
Possible designs

3-28

Analyzing a FSM: Logic Circuit to State Diagram
1. Describe combinational circuit outputs using Boolean

algebra.
2. Get the State Table for all possible Input/state

combinations.
1. Causes: Input, Present State
2. Effects: Next State, Outputs (if different from State)

3. Get a state diagram. It provides a graphical description
of the behavior.

Example 1: Analyze this FSM

11/7/1729

Input: x
State: A,B

Output: A, B

Combinational block
In: x, A, B Out: DA, DB

DA = xA+ AB+ xAB

DB = xB+ xB

Example 1: Analyze this FSM (cont)

11/7/1730

Input Present
State

Next State

X A B A B
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

DA = xA+ AB+ xAB

DB = xB+ xB

Example 1: Analyze this FSM (last)

11/7/1731

Input Present
State

Next State

X A B A B
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

00

01

10

11

X=0

1
0

1 1

1

0

0

It is an up counter

State Table
State Diagram

3-32

Designing a FSM: Specification to Circuit
Reverse of Anaysis we have seen.

1. Obtain a State Diagram using the specification. This is the
challenging part. Determine the number of flip-flops needed (We
will only use D type for convenience) and assign each state a
unique binary combination.

2. Get the State Table for all possible Input/state combinations.
1. Causes: Input, Present State
2. Effects: Next State, Outputs (if different from State)

3. The Combinational circuit truth table is given by the State Table
itself (Next state values are the D inputs). Design the
combinational circuit. Optimize it as needed.

4. Get complete circuit with Combinational Logic, flip-flops att
connected.

5. Simulate and verify the design.

3-33

Example 2: Danger Sign design from P&P
A blinking traffic sign

• No lights on
• 1 & 2 on
• 1, 2, 3, & 4 on
• 1, 2, 3, 4, & 5 on
• (repeat as long as switch

is turned on)

• Input: Switch
• Outputs: Z, Y, X
• States: 4 (bits S1, S0)
• Choose: output depends on the state

DANGER
MOVE
RIGHT

1

2

3
4

5

3-34

Traffic Sign State Diagram

State bit S1 State bit S0

Switch on
Switch off

Outputs

Transition on each clock cycle.

State Table

Input Present State Next State Output
In S1 S0 S1 S0 ZYX
0 0 0 0 0 000
0 0 1 0 0 100
0 1 0 0 0 110
0 1 1 0 0 111
1 0 0 0 1 000
1 0 1 1 0 100
1 1 0 1 1 110
1 1 1 0 0 111

35

See Logisim implementation
Present state: flipflop output
Next state: flipflop D inputs

3-36

Traffic Sign Truth Tables (from book)

Outputs
(depend only on state: S1S0)

S1 S0 Z Y X
0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Lights 1 and 2
Lights 3 and 4
Light 5

Next State: S1’S0’
(depend on state and input)

In S1 S0
S1
’

S0
’

0 X X 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

Switch

Whenever In=0, next state is 00.

3-37

Traffic Sign Logic (from book)

Master-slave
flipflop

This design is not
optimized. Try Logisim
to optimize.

Any edge triggered flip-
flop will work.

3-38

From Logic to Data Path
The data path of a computer is all the logic used to
process information.

• See the data path of the LC-3 as an example.

Combinational Logic
• Decoders -- convert instructions into control signals
• Multiplexers -- select inputs and outputs
• ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic
• State machine -- coordinate control signals and data movement
• Registers and latches -- storage elements

