
Special
Microarchitecture
based on a lecture by Sanjay Rajopadhye
modified by Yashwant Malaiya

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

5-3

LC-3
Data Path
Revisited

Filled arrow
= info to be processed.

Unfilled arrow
= control signal.

Microarchitecture
Functional hardware blocks in a digital system

• With “storage”: Registers, Register file, Memory
ØTriggerd by the system clock

• “Combinational”: MUXes, ALU, adder, SEXT, wiring etc.
ØRespond after some propagation delay

Design process:
• Design the datapath and identify control signals
• Design the Control Finite State Machine

Design of functional blocks using gates and flip-flops will
be studied later.

4

Timing relative to system clock
Combinational blocks (Logic and wiring)

• Output is always a function of the values on input wires
• If input changes, the change propagates with some propagation

delay.
Storage elements are timed

• Clock – a special signal that determines this timing
• Storage can be updated only at the tick of the clock

What happens between ticks?
• The “current” values are processed by logic and wiring to

produce values …
• … that will be used to update at the “next tick”

How fast can the clock tick?
• Must allow for the longest combinational signal path

5

Timing relative to system clock
How fast can the clock tick?

• Must allow for the longest combinational signal path.
Clock frequency: tick rate

• Ex: 2 GHz mean 2x109 cycles per second
Clock period: period between two pulses

• Inverse of clock frequency
• 2 GHz clock frequency means period is 0.5 nanosecond clock

period.
• Signals must stabilize between two clock periods. Thus

longest combinational signal path must be less than a clock
period.

6

Register Transfer and Timing
• In one clock period, signals travel from a source

register(s) to a destination register, through the
combinational logic.

• Register transfer notation describes such transfer. For
example:

Condition: Rdest <- Rsource 1 + Rsource 2
• Condition is the logical condition for which this transfer

takes place (often in terms of control signals).
• Transfer takes one clock cycle. Memory operations

assumed here to take one cycle also (in reality memories are slow, and
take multiple cycles)

• Register transfer languages:
• Basic: here
• Advanced: VHDL, Verolog: used for description/design

7

Combinational Logic

A digital circuit that computes a function of the
inputs.

Examples:
• Adder: takes X and Y and produces X + Y
• AND: takes X and Y, produces bitwise and
• NOT: takes X and Y and produces ~X

• 2-to-1 MUX: takes three inputs, X, Y and s (the last one is 1-
bit) and produces (note that this is C-syntax, not the RTN
that we will show later) (s==0) ? X : Y

8

Wires and Busses
Wires are (almost) just like electrical wires

• Directional (arrows), sometimes bidirectional
• May have a “thickness:” number of bits of data: e.g., the adder

output is 16-bits in LC-3
Busses:

• Shared wires
• Anyone can read at all times
• Write is via arbitration (control signals to decide who gets to

write on the bus)

9

Storage Elements
Large scale storage (memory): view it like an array

• Address, Data in/out
Small scale storage (registers):

• Programmer-visible registers: R0 … R7
• Special purpose registers:

ØPC, IR, PSR (processor status register), MAR, MDR

10

Memory
Processor issues commands to memory, who responds

• Mem.EN (memory enable): hey, I’m talking to you
• Mem.RW: here’s what I want you to do

Two special registers
• Memory Address Register (MAR): only processor writes to this
• Memory Data Register (MDR): both processor/memory can write

to this
Ø the processor generates the control signals

If Mem.EN and
• if Mem.RW==0, (i.e.., read) the memory outputs the value

at address MAR,
• If Mem.RW==0, copy the contents of MDR into location

Mem[MAR]

11

Registers
Every register is connected to some inputs and has a
special “load” signal.

• If load signal is 1 at the next clock tick the input is stored into the
register

• Otherwise, no change in register contents

(LD.PC & (PCMux = 10)) ? PC ß PC+1

In terms of simple RTN notation

Cycle 2: PC ß PC+1

Which assumes that during Cycle2 [LD.PC & (PCMux = 10)) is
true.

12

Register Transfer Notation
Compact, “program-like” notation
Describe what happens in the datapath
One or more transfers per clock tick

• one line = one clock tick
Two columns:

• Write the desired transfers
• List control signals to “effect the transfer”

Let’s move on to LC3-Viz (special thanks, Joe Arnett)
Corrections

• BR uses IR[8:0] instead of IR[10:0] for the PC offset

14

RTN/LC3-Viz Conventions
Signals indicated must be asserted before the clock tick in
order for the indicated transfer to occur. Sequence is:

• Signals are asserted
• Clock tick arrives, and causes the transfer

In an RTN transfer, on either the right hand side (rhs), or
left hand side (lhs)

• Mem[x] is the memory at address x
• Mem[MAR] is the memory at address that is in the MAR
• Reg[x] is Register number x

15

RTN Conventions

An RTN transfer is of the form:
LHS-location ß RHS-expression

The LHSlocation may be a memory or a specific
register or the x-th register
The RHS-expression is:

• named registers, e.g., Reg[3]
• memory locations e.g., Mem[MAR]
• simple expressions PC+1, Reg[src] + Reg[dst]

16

How does the LC-3 fetch an instruction?

17

Transfer the PC into MAR

Cycle 1: MAR ß PC # LD.MAR, GatePC

Read memory; increment PC

Cycle 2: MDR ß Mem[MAR]; PC ß PC+1 # LD.MDR, MDR.SEL, MEM.EN,
LD.PC, PCMUX

Transfer MDR into IR

Cycle 3: IR ß MDR # LD.IR, GateMDR

4-18

Control Unit State Diagram
The control unit is a state machine. Here is part of a
simplified state diagram for the LC-3:

A more complete state diagram is in Appendix C.
It will be more understandable after Chapter 5.

4-19

Control Unit
State Diagram

Appendix C.

How does the LC-3 decode the instruction?

20

Special decode step (controller makes decision, no clock cycle is
wasted since it only involves logic)

No visible signal is active

How does the LC-3 execute a NOT instruction?

21

Src register contents are negated by ALU and result is stored in
dst register

Cycle 4: Reg[dst] ß ~Reg[src]; CC ß Sign(~Reg[src]) # LD.REG,
DR = dst,
GateALU,
ALUK = ~,
SR1 = src,
LD.CC

Other instructions
Every instruction is a sequence of transfers
Every one has the same first three cycles (instruction
fetch)
Every one takes (at least one) additional cycle
Some take even more more
Each one effected by a specific set of control signals
The Controller is responsible for generating the correct
signals in the appropriate cycle
Reminder

• Logic responds after some propagation dalay,
• Storage loads are on clock ticks

22

5-23

Data Path Components

5-24

Data Path Components
Global bus

• special set of wires that carry a 16-bit signal
to many components

• inputs to the bus are “tri-state devices,”
that only place a signal on the bus when they are enabled

• only one (16-bit) signal should be enabled at any time
Øcontrol unit decides which signal “drives” the bus

• any number of components can read the bus
Øregister only captures bus data if it is write-enabled by the

control unit

Memory
• Control and data registers for memory and I/O devices
• memory: MAR, MDR (also control signal for read/write)

5-25

Data Path Components
ALU

• Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

• Output goes to bus.
Øused by condition code logic, register file, memory

Register File
• Two read addresses (SR1, SR2), one write address (DR)
• Input from bus

Øresult of ALU operation or memory read
• Two 16-bit outputs

Øused by ALU, PC, memory address
Ødata for store instructions passes through ALU

5-26

Data Path Components
More details later.
Multiplexer (MUX): selects data from multiple sources

PC and PCMUX
• Three inputs to PC, controlled by PCMUX

1. PC+1 – FETCH stage
2. Address adder – BR, JMP
3. bus – TRAP (discussed later)

MAR and MARMUX
• Two inputs to MAR, controlled by MARMUX

1. Address adder – LD/ST, LDR/STR
2. Zero-extended IR[7:0] -- TRAP (discussed later)

5-27

Data Path Components
Condition Code Logic

• Looks at value on bus and generates N, Z, P signals
• Registers set only when control unit enables them (LD.CC)

Øonly certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit – Finite State Machine
• On each machine cycle, changes control signals for next phase

of instruction processing
Øwho drives the bus? (GatePC, GateALU, …)
Øwhich registers are write enabled? (LD.IR, LD.REG, …)
Øwhich operation should ALU perform? (ALUK)
Ø…

• Logic includes decoder for opcode, etc.

