
1

Chapter 11
Introduction to
Programming in C

11-2

C: A High-Level Language
Gives symbolic names to values

• don’t need to know which register or memory location
Provides abstraction of underlying hardware

• operations do not depend on instruction set
• example: can write “a = b * c”, even though

LC-3 doesn’t have a multiply instruction
Provides expressiveness

• use meaningful symbols that convey meaning
• simple expressions for common control patterns (if-then-else)

Enhances code readability
Safeguards against bugs

• can enforce rules or conditions at compile-time or run-time

2

11-3

Compilation vs. Interpretation
Different ways of translating high-level language
Interpretation

• interpreter = program that executes program statements
• generally one line/command at a time
• limited processing
• easy to debug, make changes, view intermediate results
• languages: BASIC, LISP, Perl, Java, Matlab, C-shell

Compilation
• translates statements into machine language

Ødoes not execute, but creates executable program
• performs optimization over multiple statements
• change requires recompilation

Øcan be harder to debug, since executed code may be
different

• languages: C, C++, Fortran, Pascal

11-4

Compilation vs. Interpretation
Consider the following algorithm:

• Get W from the keyboard.
• X = W + W
• Y = X + X
• Z = Y + Y
• Print Z to screen.

If interpreting, how many arithmetic operations occur?

If compiling, we can analyze the entire program and
possibly reduce the number of operations. Can we
simplify the above algorithm to use a single
arithmetic operation?

3

11-5

Compiling a C Program
Entire mechanism is usually called
the “compiler”
Preprocessor

• macro substitution
• conditional compilation
• “source-level” transformations

Øoutput is still C
Compiler

• generates object file
Ømachine instructions

Linker
• combine object files

(including libraries)
into executable image

C
Source and
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

11-6

Compiler
Source Code Analysis

• “front end”
• parses programs to identify its pieces

Øvariables, expressions, statements, functions, etc.
• depends on language (not on target machine)

Code Generation
• “back end”
• generates machine code from analyzed source
• may optimize machine code to make it run more efficiently
• very dependent on target machine

Symbol Table
• map between symbolic names and items
• like assembler, but more kinds of information

4

A Simple Java Program

import java.lang;
public class Simple {

/* Function: main */
/* Description: count down from user input to STOP */
public static void main(String[] args)
{
/* variable declarations */
static final int STOP = 0;
int counter; /* an integer to hold count values */
int startPoint; /* starting point for countdown */

/* prompt user for input, assumes scanner */
System.out.printf("Enter a positive number: ");
startPoint = in.nextInt();

/* count down and print count */
for (counter=startPoint; counter>=STOP; counter--)
System.out.printf("%d\n", counter);

}
} 7

C vs. Java: some differences

8

Java C
1990s 1970s
Object Oriented Function oriented
Compilation: byte code Compilation: machine code
No pointers Pointers
Automatic
allocation/deallocation

Dynamic memory allocation
malloc/free
Array’s don’t know their own
size

… …

5

A Simple C Program

#include <stdio.h>
#define STOP 0

/* Function: main */
/* Description: counts down from user input to STOP */
int main(int argc, char *argv[])
{
int counter; // an integer to hold count values
int startPoint; // starting point for countdown

/* prompt user for input */
printf("Enter a positive number: ");
scanf("%d", &startPoint); /* read into startPoint */

/* count down and print count */
for (counter=startPoint; counter>=STOP; counter--)
printf("%d\n", counter);

return 0;
}

9

11-10

Preprocessor Directives
#include <stdio.h>

• Before compiling, copy contents of header file (stdio.h)
into source code.

• Header files typically contain descriptions of functions and
variables needed by the program.
Øno restrictions -- could be any C source code

#define STOP 0
• Before compiling, replace all instances of the string

"STOP" with the string "0"
• Called a macro
• Used for values that won't change during execution,

but might change if the program is reused. (Must recompile.)

6

11-11

Comments
Begins with /* and ends with */

Can span multiple lines
Cannot have a comment within a comment
Comments are not recognized within a string

• example: "my/*don't print this*/string"
would be printed as: my/*don't print this*/string

As before, use comments to help reader, not to confuse
or to restate the obvious

CS270 - Fall Semester 2016

main Function
Every C program must have a main() function:
The main function contains the code that is executed
when the program is run.
As with all functions, the code for main lives within
brackets:

int main(int argc, char *argv[])
{
/* code goes here */
}

Java is similar, but C needs the size of array (argc)
since C has no length member.

12

7

CS270 - Fall Semester 2016

main Function
main() returns an int
• Really
• “I tried void main(), and it worked!”
• This is an example of undefined behavior, which

cannot be refuted by experimentation.

13

11-14

Variable Declarations
Variables are used as names for data items.
Each variable has a type,
which tells the compiler how the data is to be interpreted
(and how much space it needs, etc.).

int counter;
int startPoint;

int is a predefined integer type in C.

8

11-15

Input and Output
Variety of I/O functions in C Standard Library.
Must include <stdio.h> to use them.

printf("%d\n", counter);
• String contains characters to print and

formatting directions for variables.
• This call says to print the variable counter as a decimal integer,

followed by a linefeed (\n).

scanf("%d", &startPoint);
• String contains formatting directions for looking at input.
• This call says to read a decimal integer and assign it to the

variable startPoint. (Don't worry about the & yet.)

11-16

More About Output
Can print arbitrary expressions, not just variables

printf("%d\n", startPoint - counter);

Print multiple expressions with a single statement
printf("%d %d\n", counter,

startPoint - counter);

Different formatting options:
%d decimal integer
%x hexadecimal integer
%c ASCII character
%f floating-point number

9

11-17

Examples
This code:

printf("%d is a prime number.\n", 43);
printf("43 plus 59 in decimal is %d.\n", 43+59);
printf("43 plus 59 in hex is %x.\n", 43+59);
printf("43 plus 59 as a character is %c.\n", 43+59);

produces this output:
43 is a prime number.
43 + 59 in decimal is 102.
43 + 59 in hex is 66.
43 + 59 as a character is f.

11-18

Examples of Input
Many of the same formatting characters are
available for user input.

scanf("%c", &nextChar);
• reads a single character and stores it in nextChar

scanf("%f", &radius);
• reads a floating point number and stores it in radius

scanf("%d %d", &length, &width);
• reads two decimal integers (separated by whitespace),

stores the first one in length and the second in width

Must use ampersand (&) for variables being modified.
(Explained in Chapter 16.)

10

CS270 - Fall Semester 2016

Compiling and Linking

Various compilers available
ngcc, c99, c11, clang
n includes preprocessor, compiler, and linker
nWarning: some features are implementation dependent!

Lots and lots of options
n level of optimization, debugging
npreprocessor, linker options
nusually controlled by makefile
n intermediate files --

object (.o), assembler (.s), preprocessor (.i), etc.

19

11-20

Remaining Chapters on C
A more detailed look at many C features.

• Variables and declarations
• Operators
• Control Structures
• Functions
• Data Structures
• I/O

Emphasis on how C is implemented by LC-3 assembly
language.

Also see C Reference in Appendix D.

