
Chapter 9

TRAP Routines

and

Subroutines

9-2

System Calls

Certain operations require specialized knowledge
and protection:

• specific knowledge of I/O device registers
and the sequence of operations needed to use them

• I/O resources shared among multiple users/programs;
a mistake could affect lots of other users!

Not every programmer knows (or wants to know)
this level of detail

Provide service routines or system calls
(part of operating system) to safely and conveniently
perform low-level, privileged operations

9-3

System Call

1. User program invokes system call.

2. Operating system code performs operation.

3. Returns control to user program.

In LC-3, this is done through the TRAP mechanism.

9-4

LC-3 TRAP Mechanism

1. A set of service routines.

• part of operating system -- routines start at arbitrary addresses
(convention is that system code is below x3000)

• up to 256 routines

2. Table of starting addresses.

• stored at x0000 through x00FF in memory

• called System Control Block in some architectures

3. TRAP instruction.

• used by program to transfer control to operating system

• 8-bit trap vector names one of the 256 service routines

4. A linkage back to the user program.

• want execution to resume

immediately after the TRAP instruction

9-5

TRAP Instruction

Trap vector

• identifies which system call to invoke

• 8-bit index into table of service routine addresses

in LC-3, this table is stored in memory at 0x0000 – 0x00FF

8-bit trap vector is zero-extended into 16-bit memory address

Where to go

• lookup starting address from table; place in PC

How to get back

• save address of next instruction (current PC) in R7

9-6

TRAP

NOTE: PC has already been incremented

during instruction fetch stage.

9-7

RET (JMP R7)

How do we transfer control back to

instruction following the TRAP?

We saved old PC in R7.

• JMP R7 gets us back to the user program at the right spot.

• LC-3 assembly language lets us use RET (return)

in place of “JMP R7”.

Must make sure that service routine does not

change R7, or we won’t know where to return.

9-8

TRAP Mechanism Operation

1. Lookup starting address.

2. Transfer to service routine.

3. Return (JMP R7).

9-9

Example: Using the TRAP Instruction

.ORIG x3000

LD R2, TERM ; Load negative ASCII ‘7’

LD R3, ASCII ; Load ASCII difference

AGAIN TRAP x23 ; input character

ADD R1, R2, R0 ; Test for terminate

BRz EXIT ; Exit if done

ADD R0, R0, R3 ; Change to lowercase

TRAP x21 ; Output to monitor...

BRnzp AGAIN ; ... again and again...

TERM .FILL xFFC9 ; -‘7’

ASCII .FILL x0020 ; lowercase bit

EXIT TRAP x25 ; halt

.END

9-10

Example: Output Service Routine
.ORIG x0430 ; syscall address

ST R7, SaveR7 ; save R7 & R1

ST R1, SaveR1

; ----- Write character

TryWrite LDI R1, CRTSR ; get status

BRzp TryWrite ; look for bit 15 on

WriteIt STI R0, CRTDR ; write char

; ----- Return from TRAP

Return LD R1, SaveR1 ; restore R1 & R7

LD R7, SaveR7

RET ; back to user

CRTSR .FILL xF3FC

CRTDR .FILL xF3FF

SaveR1 .FILL 0

SaveR7 .FILL 0

.END

stored in table,
location x21

9-11

TRAP Routines and their Assembler Names

vector symbol routine

x20 GETC read a single character (no echo)

x21 OUT output a character to the monitor

x22 PUTS write a string to the console

x23 IN
print prompt to console,

read and echo character from keyboard

x25 HALT halt the program

9-12

Saving and Restoring Registers
Must save the value of a register if:

• Its value will be destroyed by service routine, and

• We will need to use the value after that action.

Who saves?

• caller of service routine?

knows what it needs later, but may not know what gets

altered by called routine

• called service routine?

knows what it alters, but does not know what will be

needed later by calling routine

9-13

Example

LEA R3, Binary

LD R6, ASCII ; char->digit template

LD R7, COUNT ; initialize to 10

AGAIN TRAP x23 ; Get char

ADD R0, R0, R6 ; convert to number

STR R0, R3, #0 ; store number

ADD R3, R3, #1 ; incr pointer

ADD R7, R7, -1 ; decr counter

BRp AGAIN ; more?

BRnzp NEXT

ASCII .FILL xFFD0

COUNT .FILL #10

Binary .BLKW #10

What’s wrong with this routine?

What happens to R7?

9-14

Saving and Restoring Registers

Called routine -- “callee-save”

• Before start, save any registers that will be altered

(unless altered value is desired by calling program!)

• Before return, restore those same registers

Calling routine -- “caller-save”

• Save registers destroyed by own instructions or

by called routines (if known), if values needed later

save R7 before TRAP

save R0 before TRAP x23 (input character)

• Or avoid using those registers altogether

Values are saved by storing them in memory.

9-15

Question

Can a service routine call another service routine?

If so, is there anything special the calling service routine

must do?

9-16

What about User Code?

Service routines provide three main functions:

1. Shield programmers from system-specific details.

2. Write frequently-used code just once.

3. Protect system resources from malicious/clumsy

programmers.

Are there any reasons to provide the same functions

for non-system (user) code?

9-17

Subroutines

A subroutine is a program fragment that:
• lives in user space

• performs a well-defined task

• is invoked (called) by another user program

• returns control to the calling program when finished

Like a service routine, but not part of the OS
• not concerned with protecting hardware resources

• no special privilege required

Reasons for subroutines:
• reuse useful (and debugged!) code without having to

keep typing it in

• divide task among multiple programmers

• use vendor-supplied library of useful routines

9-18

JSR Instruction

Jumps to a location (like a branch but unconditional),

and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”

• target address is PC-relative (PC + Sext(IR[10:0]))

• bit 11 specifies addressing mode

if =1, PC-relative: target address = PC + Sext(IR[10:0])

if =0, register: target address = contents of register IR[8:6]

9-19

JSR

NOTE: PC has already been incremented

during instruction fetch stage.

9-20

JSRR Instruction

Just like JSR, except Register addressing mode.

• target address is Base Register

• bit 11 specifies addressing mode

What important feature does JSRR provide

that JSR does not?

9-21

JSRR

NOTE: PC has already been incremented

during instruction fetch stage.

9-22

Returning from a Subroutine

RET (JMP R7) gets us back to the calling routine.

• just like TRAP

9-23

Example: Negate the value in R0

2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3

ADD R0, R3, #0 ; copy R3 to R0

JSR 2sComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: Caller should save R0 if we’ll need it later!

9-24

Passing Information to/from Subroutines

Arguments

• A value passed in to a subroutine is called an argument.

• This is a value needed by the subroutine to do its job.

• Examples:

In 2sComp routine, R0 is the number to be negated

In OUT service routine, R0 is the character to be printed.

In PUTS routine, R0 is address of string to be printed.

Return Values

• A value passed out of a subroutine is called a return value.

• This is the value that you called the subroutine to compute.

• Examples:

In 2sComp routine, negated value is returned in R0.

In GETC service routine, character read from the keyboard

is returned in R0.

9-25

Using Subroutines

In order to use a subroutine, a programmer must know:

• its address (or at least a label that will be bound to its address)

• its function (what does it do?)

NOTE: The programmer does not need to know

how the subroutine works, but

what changes are visible in the machine’s state

after the routine has run.

• its arguments (where to pass data in, if any)

• its return values (where to get computed data, if any)

9-26

Saving and Restore Registers

Since subroutines are just like service routines,

we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,

except for return values.

• Save anything that the subroutine will alter internally

that shouldn’t be visible when the subroutine returns.

• It’s good practice to restore incoming arguments to

their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any other

subroutine or service routine (TRAP).

• Otherwise, you won’t be able to return to caller.

9-27

Example

(1) Write a subroutine FirstChar to:

find the first occurrence

of a particular character (in R0)

in a string (pointed to by R1);

return pointer to character or to end of string (NULL) in R2.

(2) Use FirstChar to write CountChar, which:

counts the number of occurrences

of a particular character (in R0)

in a string (pointed to by R1);

return count in R2.

Can write the second subroutine first,

without knowing the implementation of FirstChar!

9-28

CountChar Algorithm (using FirstChar)

save regs

call FirstChar

R3 <- M(R2)

R3=0

R1 <- R2 + 1

restore
regs

return

no

yes

save R7,

since we’re using JSR

9-29

CountChar Implementation
; CountChar: subroutine to count occurrences of a char
CountChar

ST R3, CCR3 ; save registers
ST R4, CCR4

ST R7, CCR7 ; JSR alters R7
ST R1, CCR1 ; save original string ptr
AND R4, R4, #0 ; initialize count to zero

CC1 JSR FirstChar ; find next occurrence (ptr in R2)
LDR R3, R2, #0 ; see if char or null
BRz CC2 ; if null, no more chars
ADD R4, R4, #1 ; increment count
ADD R1, R2, #1 ; point to next char in string
BRnzp CC1

CC2 ADD R2, R4, #0 ; move return val (count) to R2
LD R3, CCR3 ; restore regs
LD R4, CCR4

LD R1, CCR1

LD R7, CCR7

RET ; and return

9-30

FirstChar Algorithm

save regs

R2 <- R1

R3 <- M(R2)

R3=0

R3=R0

R2 <- R2 + 1

restore
regs

return

no

no

yes

yes

9-31

FirstChar Implementation
; FirstChar: subroutine to find first occurrence of a char

FirstChar

ST R3, FCR3 ; save registers

ST R4, FCR4 ; save original char

NOT R4, R0 ; negate R0 for comparisons

ADD R4, R4, #1

ADD R2, R1, #0 ; initialize ptr to beginning of string

FC1 LDR R3, R2, #0 ; read character

BRz FC2 ; if null, we’re done

ADD R3, R3, R4 ; see if matches input char

BRz FC2 ; if yes, we’re done

ADD R2, R2, #1 ; increment pointer

BRnzp FC1

FC2 LD R3, FCR3 ; restore registers

LD R4, FCR4 ;

RET ; and return

9-32

Library Routines
Vendor may provide object files containing
useful subroutines

• don’t want to provide source code -- intellectual property

• assembler/linker must support EXTERNAL symbols
(or starting address of routine must be supplied to user)

...

.EXTERNAL SQRT

...

LD R2, SQAddr ; load SQRT addr

JSRR R2

...

SQAddr .FILL SQRT

Using JSRR, because we don’t know whether SQRT
is within 1024 instructions.

