Chapter 5
The LC-3

Instruction Set Architecture

ISA = All of the programmer-visible components

and operations of the computer
* memory organization
» address space -- how may locations can be addressed?
» addressibility -- how many bits per location?
* register set
» how many? what size? how are they used?
* instruction set
» opcodes
» data types
» addressing modes

ISA provides all information needed for someone that wants to
write a program in machine language
(or translate from a high-level language to machine language).

5-2

LC-3 Overview:. Memory and Registers

Memory
« address space: 2% |ocations (16-bit addresses)
« addressability: 16 bits

Registers
* temporary storage, accessed in a single machine cycle
»accessing memory generally takes longer than a single cycle
* eight general-purpose registers: RO - R7
»each 16 bits wide
»how many bits to uniquely identify a register?
« other registers

»not directly addressable, but used by (and affected by)
Instructions

» PC (program counter), condition codes

5-3

LC-3 Overview: Instruction Set

Opcodes
15 opcodes
« Operate instructions: ADD, AND, NOT
- Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
« Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
« some opcodes set/clear condition codes, based on result:
» N = negative, Z = zero, P = positive (> 0)
Data Types
« 16-bit 2’ s complement integer

Addressing Modes
 How is the location of an operand specified?
* non-memory addresses: immediate, register
« memory addresses: PC-relative, indirect, base+offset

5-4

Operate Instructions
Only three operations: ADD, AND, NOT

Source and destination operands are registers
 These instructions do not reference memory.

« ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction.

Will show dataflow diagram with each instruction.

* illustrates when and where data moves
to accomplish the desired operation

9-5

Dataflow diagrams

Will show dataflow diagram with each instruction.

* illustrates when and where data moves
to accomplish the desired operation

Components in data flow diagrams:

Registers: each register can hold 16 bits in LC-3. Several
Register File: contains eight 16-bit registers

ALU: combinational (no storage). Two inputs, one output,
functionality can be selected.

SEXT: combinational. Sign extension from 5 to 16 bits.

Memory: 216 words. Addressed by 16 bit MAR and MDR holds
data

How components are implemented?

Last third of the class

5-6

NOT (Register)

15 14 13 12 11 10 G] G 5 4 3 7 1 ()
NOT |1 0 0 1| Dst Sre (1 1 1 11 1
Register File
Dst <
Src Assembly Ex
NOT R3, R2

NI

Note. Src and Dst
could be the same register.

r""_\\
"‘_g/’

S5-7

ADD/AND (Reg ist er) thif zero means ‘register mode ”

15 14 13 12 11 10 2 1 0

G f v 4 3
ADD |o 0 0 1| pst | srec1 |0|0 O] sre2

15 14 13 12 11 10 & & 7 & 5 4 3 2 1 O

AND |0 1 0 1| Dst | Srcl |0|0 O Src2
Register File
Src2
Dst -«
Assembly EXx:
Sro] Add R3, R1, R3
(1) (1)

5-8

ADD/AND (Immedlate)

15 14 13 12 11 10

this one means ‘immediate mode ”

”klh13£l

ADD |0 0 0 1| bDst Srcl 1 Trmm5
15 14 13 12 11 10 8 7 G 5 4 3 z 1 0
AND (0 1 0 1| Dst Srel |1 Imm5
Register File Assembly EXx:
Add R3, R3, #1
. . . Dst <
Note: Immediate field is
sign-extended. n—
IR[4:0] % Sext @
(1)

Instruction Reg

LJ

5-9

Using Operate Instructions
With only ADD, AND, NOT...

= How do we subtract? Hint: Negate and add

« How do we OR? HINnt: Demorgan’s law

« How do we copy from one register to another?

« How do we initialize a register to zero?

5-10

Data Movement Instructions

Load -- read data from memory to register
« LD: PC-relative mode
 LDR: base+offset mode
 LDI: indirect mode

Store -- write data from register to memory
 ST: PC-relative mode
« STR: base+offset mode
 STI: indirect mode

Load effective address -- compute address,
save in register

 LEA: immediate mode

« does not access memory

5-11

PC-Relative Addressing Mode

Want to specify address directly in the instruction
e But an address is 16 bits, and so is an instruction!

« After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address.

Solution:
« Use the 9 bits as a signed offset from the current PC.

9 bits: — 256 < offset < +255
Can form any address X, such that: PC-256 < X<PC+255

Remember that PC is incremented as part of the FETCH phase;

This is done before the EVALUATE ADDRESS stage.
5-12

Assembly EXx:

. LD R1, Labell
LD (PC-Relative)
15 14 13 12 11 10 § 7 6 5 4 3 2 1 0
ID|o o0 1 o Dst PCoffset9
PC Register File Memory
Dst
—
Sext i l
< TIR[S:O] \/
Instruction Reg (2
\/
MAR ®
€
MDR

5-13

Assembly EXx:

- ST R1, Label?
ST (PC-Relative)
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
ST |0 0 1 1| src PCoffset9
PC Register File Memory
Src
> A
Sext l
3]
@ TIR[8:0] \V
Instruction Reg (2
\/
MAR ®
MDR

5-14

Indirect Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.
 What about the rest of memory?

Solution #1:

 Read address from memory location,
then load/store to that address.

First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

5-15

Assembly EXx:

LDI (Indirect) LDl R4, Adr
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
ILDI (1 0 1 0| Dst PCoffset9
PC Register File Memory
Dst
©) — >
%)
— [
Sext l l
@TIR[S:O] \
| N+ S
. = (5
Instruction Reg (2
\{
MAR [@ @
A< -
MDR 2 5-16

Assembly EXx:

STI (Indirect) STl R4, Adr

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0O
STL (1 0 1 1| src PCoffset9

PC Register File Memory

Src
@ —> "
(5)
—{ 1]
Sext l l

S TIR[S:O]

Instruction Reg

B)
A\
MAR [@ @
p
MDR ©

5-17

Base + Offset Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.
 What about the rest of memory?

Solution #2:
 Use aregister to generate a full 16-bit address.

4 bits for opcode, 3 for src/dest reqister,
3 bits for base register -- remaining 6 bits are used

as a signed offset.

» Offset is sign-extended before adding to base register.

5-18

LDR (Base+Offset)

Assembly EXx:
LDR R4, R1, #1

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
IDR |0 1 1 o| Dst Base offseté6
Register File Memory
Dst
(4 Base
0 '
—> Sext l
IR[5:0] Vg
+/
Instruction Reg (2
A\
MAR a)
> 3
MDR 5-19

Assembly EXx:

STR (Base+Offset) STR R4, R, #1
15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0
STR |0 1 1 1| src Base offseté6
Register File Memory
Src
©) Base
) —> A
) -
—> Sext |
L
IR[5:0] V%
"'/
Instruction Reg 2
A\
MAR @
— 4

MDR 5-20

Load Effective Address

Computes address like PC-relative (PC plus signed offset)
and stores the result into a register.

Note: The address is stored in the reqister,
not the contents of the memory location.

LEA R1, Begin We can use the destination
LDR R3, R1, #0 register as a pointer

5-21

LEA (Immediate)

15 14 13 12 11 10 @ & 7 6 &5 4 3 2 1 0
LEA (1 1 1 o| Dst PCoffset?
: : Assembly EXx:
PC Register File LEA RL, Labl

> Dst

Sext l
(1) TIR[B:O] —
I \7-'J

Instruction Reg .

5-22

Example (with RTL)

Address Instruction Comments
x30F6 1110001111111101 R1 « PC — 3 = x30F4
xX30F7 0001010001101110 R2 « R1 + 14 = x3102
x30F8 0011010111111011 M?"X[BPO‘;;HE’L“XSF%Z
x30F9 0101010010100000 R2 0
x30FA 0001010010100101 R2 « R2+5=5
x30FB 0111010001001110 M&?Xl;lﬁ“z]]‘:iz
R3 « M[M[x30F4]]
x30FC 1010011111110111 R3 « M[x3102]
R3 «5

opcode

5-23

Example (in assembly)

Address Instruction Comments
x30F 0 1 001 111111101 LEART1 Lab2
x30F7 0 001 0001101110 ADDR2 R1,#14
x30F8 0 01 0 1 11111011 STR2 Lab2
x30F9 0 —210 63101 666060 ANDR2 R2 #0
x30FA 0 1 0010100101 ADDR2 R2#5
x30FB 0 610 601 6601110 LDRR2 RY,#14
x30FC 1 011111110111 LDR2Lab2

24

LC3 Addressing Modes: Comparison

BB LD R4, LABEL
ISTH ST R4, LABEL
LBl 1DIR4, HERE
'STI " STIR4,HERE
JEBRT LDR R4, R2, #-5
[STR.. " STRR4,R2,#5
[LEAT T LEA R4, TARGET

R3

R3

R4
M[LABEL]
R4
M[M[HERE]]
R4

M[R2 + 5]
R4

R2, #7

R2, R1

M[LABEL]

R4

M[M[HERE]]

R4

M[R2 - 5]

R4

address of TARGET

25

Control Instructions

Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch
* branch is taken if a specified condition is true
»signed offset is added to PC to yield new PC
» else, the branch is not taken
»PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
« always changes the PC

TRAP

« changes PC to the address of an OS “service routine”
* routine will return control to the next instruction (after TRAP)

5-26

Condition Codes

LC-3 has three condition code registers:
N -- negative
Z -- Zero
P -- positive (greater than zero)

Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
 Based on the last instruction that altered a register

5-27

Branch Instruction
Branch specifies one or more condition codes.
If the set bit is specified, the branch is taken.

« PC-relative addressing:.
target address is made by adding signed offset (IR[8:0])
to current PC.

* Note: PC has already been incremented by FETCH stage.

* Note: Target must be within 256 words of BR instruction.

If the branch is not taken,
the next sequential instruction is executed.

5-28

BR (PC-Relative)

15 14 13 12 11 10 5 8 7 6 5 4 3 2 1 0
BR|o 0 0 oln|z|p PCoffset9
PC ©
<

3 taken [

(2
Logic |J/RI119] Sext 1 l
9 TIR[8:0] \
[11 - \ + /
AT 74 g Instruction Reg (2)

5-29
What happens if bits [11:9] are all zero? All one?

Using Branch Instructions

Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

R1 « x3100
R3« 0
R2 « 12

P
<«

R2=07? NO

YES

A 4

R4 « M[R1]
R3 < R3+R4
R1 < R1+1
R2 « R2-1

5-30

R1 <« x300C

Sum of 4 integers S
R4 <« M[R1]
;Computes sum of integers RR31 (;R§1++R14
;R1: pointer, initialized to NUMS (x300C) R2 « R2-1
;R3: sum, initially cleared, accumulated here
;R2: down counter, initially holds number of
numbers 4
.ORIG 0x3000 LEA R1,NUMS
AND R3,R3, #0
"""""" ‘ AND R2,R2, #0
DONE STR3, SUM ;added ADD R2, R2, #4
HALT
NUMS FILL 3 LOOP BRz DONE
FILL -4 LDR R4,R1,#0
FILL T ADD R3,R3,R4
SUM ;III_JK_V:\BI 1 ADD R1,R1#1
END ADD R2,R2,#-1
BRnzp LOOP

31

Sample Program

Address Instruction Comments
x3000 1110001011111111 R1 « x3100 (PC+0xFF)
x3001 0101011011100000 R3 «0
x3002 010101001012100000 R2 « 0
x3003 0001010010101100 R2 « 12
x3004 0000010000000101 If Z, goto x300A (PC+5)
x3005 0110100001000000 Load next value to R4
x3006 0001011011000001 Add to R3
x3007 0001001001100001 Increment R1 (pointer)
X3008 0001010010111111 Decrement R2 (counter)
x3009 00001111111110160 Goto x3004 (PC-6)

5-32

JMP (Register)

Jump is an unconditional branch -- always taken.
« Target address is the contents of a register.
« Allows any target address.

~

15 14 13 12 11 10 © 7

6 5 4 3 2 1
JMP 1 100\000\Base|000000

PC Register File

Base

5-33

TRAP

15 14 13 12 11 10 % 8 7 ¢ 5 4 3 J

1

~
1)

TRAP |1 1 1 1|(0 0 0 O trapvects

Calls a service routine, identified by 8-bit “trap vector.”

vector |routine
X23 |input a character from the keyboard
Xx21 |output a character to the monitor

X25

halt the program

When routine is done,
PC is set to the instruction following TRAP.
(We’ |l talk about how this works later.)

5-34

Another Example

Count the occurrences of a character in afile
 Program begins at location x3000
Read character from keyboard

Load each character from a “file”
» File is a sequence of memory locations

» Starting address of file is stored in the memory location
immediately after the program

If file character equals input character, increment counter
End of file is indicated by a special ASCII value: EOT (x04)

At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)

A special character used to indicate the end of a sequence
Is often called a sentinel.

« Useful when you don’ t know ahead of time how many times
to execute a loop.

5-35

Flow Chart

Count=0
(R2=0)

i

Done? YES

Ptr = 1st file character
(R3 = M[x3012))

i

Input char

from keybd
(TRAP x23)

i

Convert count to

(R1 ?= EOT)

Match?
(R1 ?= RO)

YES

Load char from file
(R1 = M[R3))

Incr Count
(R2=R2 +1)

'

Load next char from file
(R3=R3 + 1, R1 = M[R3))

g ASCII character
(RO = x30, RO = R2 + RO)

i

Print count
(TRAP x21)

HALT
(TRAP x25)

5-36

.ORIG x3000

AND R2,R2,#0 ; R2 is counter, initialize to 0
LD R3,PTR ; R3 is pointer to characters
TRAP x23 ; RO gets character input

LDR R1,R3,#0 ; R1 gets the next character

; Test character for end of file

4

TEST ADD R4,R1,#-4 ; Test for EOT
BRz OUTPUT ; If done, prepare the output
; Test character for match. If a match, increment count.

4

NOT R1,R1
ADD R1,R1,RO ; If match, R1 = xFFFF
NOT R1,R1 ; If match, R1 = x0000

BRnp GETCHAR
ADD R2,R2,#1

; no match, do not increment

CS270 - Spring 2013 -

; Get next character from the file

GETCHAR ADD R3,R3,#1 ; Increment the pointer
LDR R1,R3,#0 ; R1 gets the next character to
test
BRnzp TEST

; Output the count.

OUTPUT LD RO,ASCII
ADD RO,RO,R2
TRAP x21
TRAP x25

; Load the ASCII template
; Convert binary to ASCII
; ASCII code in RO is displayed
; Halt machine

; Storage for pointer and ASCII template
ASCII .FILL x0030

PTR .FILL x3015
.END

37

AlAaAv~AA ClEal-A

Program (1 of 2)

Address Instruction Comments
x3000 0101010010100000 R2 « 0 (counter)
x3001 0010011000010000 R3 « M[x3102] (ptr)
x3002 1111000000100011 Input to RO (TRAP x23)
x3003 0110001011000000 R1 « M[R3]
x3004 0001100001111100 R4 « R1 -4 (EOT)
x3005 0000010000001000 If Z, goto x300E
x3006 100100100117111111 R1 « NOT R1
x3007 0001001001100001 Rl1«R1+1
X3008 0001001001000000 R1 « R1+ R0
x3009 0000101000000001 If N or P, goto x300B

5-38

Program (2 of 2)

Address Instruction Comments
x300A 0001010010100001 R2 « R2+1
x300B 0001011011100001 R3«R3+1
x300C 0110001011000000 R1 « M[R3]
x300D 0000111111110110 Goto x3004
x300E 0010000000000100 RO « M[x3013]
x300F 0001000000000010 RO « RO + R2
x3010 1111000000100001 Print RO (TRAP x21)
x3011 1111000000100101 HALT (TRAP x25)
X3012 Starting Address of File

x3013 00000000001120000 ASCII x30 (D)

5-39

| C-3
Data Path
Revisited

Filled arrow

= info to be processed.

Unfilled arrow
= control signal.

GatsMARMUX —/\

/\—GatsPC

ﬁ

= MARMUX
i
AG 16
PCMUX
i
/e T Yot e
'
‘7o
ADDR2ZMUX ADDR1MUX

2

[10:0]

4

f& 16 A
17> 5EXT]
A=

[590]

¢+ 7w SEXT|

[+0]

LD.MDR MDR

MEMORY

MEMEN, R.W

\ /
de ke

0 16,
SEXT| b

® | sR2

SR2- /% ouT

f\f‘_l /6

REG
FILE

SRl | 3
ouT [/ SR1

Sie

FINITE

o
A J

MACHINE

CONTROL

N Z|P<=—LDCC

LOGIC

18

A S
MAR <— LD.MAR

STATE |-

INPUT

4
SR2MUX

16

\/

Sie

GatsALU

QUTPUT

5-40

Data Path Components

Global bus

« special set of wires that carry a 16-bit signal
to many components

* inputs to the bus are “tri-state devices,”
that only place a signal on the bus when they are enabled

« only one (16-bit) signal should be enabled at any time
> control unit decides which signal “drives” the bus
« any number of components can read the bus

»register only captures bus data if it is write-enabled by the
control unit

Memory
« Control and data registers for memory and I/O devices
« memory: MAR, MDR (also control signal for read/write)

5-41

Data Path Components

ALU

« Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

« Output goes to bus.
»used by condition code logic, register file, memory

Register File
« Two read addresses (SR1, SR2), one write address (DR)
* Input from bus
»result of ALU operation or memory read
 Two 16-bit outputs
»used by ALU, PC, memory address
»data for store instructions passes through ALU

5-42

Data Path Components

More detalls later.
Multiplexer (MUX): selects data from multiple sources

PC and PCMUX
« Three inputs to PC, controlled by PCMUX
1. PC+1 - FETCH stage
2. Address adder - BR, JMP
3. bus — TRAP (discussed later)

MAR and MARMUX
« Two inputs to MAR, controlled by MARMUX
1. Address adder — LD/ST, LDR/STR
2. Zero-extended IR[7:0] -- TRAP (discussed later)
5-43

Data Path Components

Condition Code Logic
 Looks at value on bus and generates N, Z, P signals
* Registers set only when control unit enables them (LD.CC)

»only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit = Finite State Machine

« On each machine cycle, changes control signals for next phase
of instruction processing

»who drives the bus? (GatePC, GateALU, ...)

»which registers are write enabled? (LD.IR, LD.REG, ...)
»which operation should ALU perform? (ALUK)

> ...

* Logic includes decoder for opcode, etc.
5-44

