
Chapter 18

I/O in C

18-2

Standard C Library

• I/O commands are not included as part of the C

language.

• Instead, they are part of the Standard C Library.

• A collection of functions and macros

that must be implemented by any ANSI standard implementation.

• Automatically linked with every executable.

• Implementation depends on processor, operating system, etc.,

but interface is standard.

• Since they are not part of the language,

compiler must be told about function interfaces.

• Standard header files are provided,

which contain declarations of functions, variables, etc.

18-3

Basic I/O Functions

The standard I/O functions are declared in the

<stdio.h> header file.

Function Description

putchar Displays an ASCII character to the screen.

getchar Reads an ASCII character from the keyboard.

printf Displays a formatted string,

scanf Reads a formatted string.

fopen Open/create a file for I/O.

fprintf Writes a formatted string to a file.

fscanf Reads a formatted string from a file.

18-4

Text Streams

All character-based I/O in C is performed on text streams.

A stream is a sequence of ASCII characters, such as:

• the sequence of ASCII characters printed to the monitor

by a single program

• the sequence of ASCII characters entered by the user

during a single program

• the sequence of ASCII characters in a single file

Characters are processed in the order in which

they were added to the stream.

• E.g., a program sees input characters in the same order

as the user typed them.

Standard input stream (keyboard) is called stdin.

Standard output stream (monitor) is called stdout.

18-5

Character I/O

putchar(c) Adds one ASCII character (c) to stdout.

getchar() Reads one ASCII character from stdin.

These functions deal with "raw" ASCII characters;

no type conversion is performed.

char c = 'h';

...

putchar(c);

putchar('h');

putchar(104);

Each of these calls
prints 'h' to the screen.

18-6

Buffered I/O

In many systems, characters are buffered in memory

during an I/O operation.

• Conceptually, each I/O stream has its own buffer.

Keyboard input stream

• Characters are added to the buffer only when the

newline character (i.e., the "Enter" key) is pressed.

• This allows user to correct input before confirming with Enter.

Output stream

• Characters are not flushed to the output device

until the newline character is added.

18-7

Input Buffering

printf("Input character 1:\n");

inChar1 = getchar();

printf("Input character 2:\n");

inChar2 = getchar();

• After seeing the first prompt and typing a single

character, nothing happens.

• Expect to see the second prompt, but character not

added to stdin until Enter is pressed.

• When Enter is pressed, newline is added to stream

and is consumed by second getchar(),
so inChar2 is set to'\n'.

18-8

Output Buffering

putchar('a');

/* generate some delay */

for (i=0; i<DELAY; i++) sum += i;

putchar('b');

putchar('\n');

• User doesn't see any character output until

after the delay.

• 'a' is added to the stream before the delay,

but the stream is not flushed (displayed) until
'\n' is added.

18-9

Formatted I/O

Printf and scanf allow conversion between

ASCII representations and internal data types.

Format string contains text to be read/written,

and formatting characters that describe

how data is to be read/written.

%d signed decimal integer

%f signed decimal floating-point number

%x unsigned hexadecimal number

%b unsigned binary number

%c ASCII character

%s ASCII string

18-10

Special Character Literals

Certain characters cannot be easily represented

by a single keystroke, because they

• correspond to whitespace (newline, tab, backspace, ...)

• are used as delimiters for other literals (quote, double quote, ...)

These are represented by the following sequences:

\n newline

\t tab

\b backspace

\\ backslash

\' single quote

\" double quote

\0nnn ASCII code nnn (in octal)

\xnnn ASCII code nnn (in hex)

18-11

printf

Prints its first argument (format string) to stdout with all

formatting characters replaced by the ASCII

representation of the corresponding data argument.

int a = 100;

int b = 65;

char c = 'z';

char banner[10] = "Hola!";

double pi = 3.14159;

printf("The variable 'a' decimal: %d\n", a);

printf("The variable 'a' hex: %x\n", a);

printf("The variable 'a' binary: %b\n", a);

printf("'a' plus 'b' as character: %c\n", a+b);

printf("A char %c.\t A string %s\n A float %f\n",

c, banner, pi);

18-12

Missing Data Arguments

What happens when you don't provide a

data argument for every formatting character?

printf("The value of nothing is %d\n");

%d will convert and print whatever is on the stack

in the position where it expects the first argument.

In other words, something will be printed,

but it will be a garbage value as far as our program

is concerned.

18-13

scanf

Reads ASCII characters from stdin,

matching characters to its first argument (format string),

converting character sequences according to any

formatting characters, and storing the converted values

to the addresses specified by its data pointer arguments.

char name[100];

int bMonth, bDay, bYear;

double gpa;

scanf("%s %d/%d/%d %lf",

name, &bMonth, &bDay, &bYear, &gpa);

18-14

scanf Conversion

For each data conversion, scanf will skip whitespace

characters and then read ASCII characters until it

encounters the first character that should NOT be

included in the converted value.

%d Reads until first non-digit.

%x Reads until first non-digit (in hex).

%s Reads until first whitespace character.

Literals in format string must match literals in the

input stream.

Data arguments must be pointers, because scanf

stores the converted value to that memory address.

18-15

scanf Return Value

The scanf function returns an integer, which indicates

the number of successful conversions performed.

• This lets the program check whether the input stream

was in the proper format.

Example:
scanf("%s %d/%d/%d %lf",

name, &bMonth, &bDay, &bYear, &gpa);

Input Stream Return Value

Mudd 02/16/69 3.02 5

Muss 02 16 69 3.02 2

Doesn't match literal '/', so scanf quits
after second conversion.

18-16

Bad scanf Arguments

Two problems with scanf data arguments

1. Not a pointer
int n = 0;

scanf("%d", n);

Will use the value of the argument as an address.

2. Missing data argument

scanf("%d");

Will get address from stack, where it expects to

find first data argument.

If you're lucky, program will crash because of trying to modify

a restricted memory location (e.g., location 0). Otherwise,

your program will just modify an arbitrary memory location,

which can cause very unpredictable behavior.

18-17

Variable Argument Lists

The number of arguments in a printf or scanf call

depends on the number of data items being

read or written.

Declaration of printf (from stdio.h):

int printf(const char*, ...);

Recall calling sequence from Chapter 14

• Parameters pushed onto stack from right to left.

• This stack-based calling convention allows for

a variable number of arguments,

and fixed arguments (which are named first)

are always the same offset from the frame ptr.

18-18

File I/O

For our purposes, a file is a sequence of ASCII characters

stored on some device.

• Allows us to process large amounts of data

without having to type it in each time or read it all on the screen

as it scrolls by.

Each file is associated with a stream.

• May be input stream or output stream (or both!).

The type of a stream is a "file pointer", declared as:

FILE *infile;

The FILE type is defined in <stdio.h>.

18-19

fopen

The fopen (pronounced "eff-open") function associates a

physical file with a stream.

FILE *fopen(char* name, char* mode);

First argument: name

• The name of the physical file, or how to locate it on the

storage device. This may be dependent on the underlying

operating system.

Second argument: mode

• How the file will be used:
"r" -- read from the file

"w" -- write, starting at the beginning of the file

"a" -- write, starting at the end of the file (append)

18-20

fprintf and fscanf

Once a file is opened, it can be read or written
using fscanf() and fprintf(), respectively.

These are just like scanf() and printf(),

except an additional argument specifies a file pointer.

fprintf(outfile, "The answer is %d\n", x);

fscanf(infile, "%s %d/%d/%d %lf",

name, &bMonth, &bDay, &bYear, &gpa);

18-21

fprintf and fscanf

Once a file is opened, it can be read or written
using fscanf() and fprintf(), respectively.

These are just like scanf() and printf(),

except an additional argument specifies a file pointer.

fprintf(outfile, "The answer is %d\n", x);

fscanf(infile, "%s %d/%d/%d %lf",

name, &bMonth, &bDay, &bYear, &gpa);

22

sprintf and sscanf

These are just like fscanf() and fprintf(),

except the additional argument specifies a string instead

of a file pointer:

char string[80];

sprintf(string, "The answer is %d\n", x);

sscanf(string, "%s %d/%d/%d %lf",

name, &bMonth, &bDay, &bYear, &gpa);

