
1

Extra C Material

Based on material in: The C Programming Language,
Second Edition by Brian W. Kernighan and Dennis M.
Ritchie. Prentice Hall, Inc., 1988.

Two dimensional array vs pointer to array
char *students[] = {“Fi” , “April”, “Raghd”, “Jack”, “Bobby”};

1-2

FI\0

April\0

char stu_arr[][10] = {“Fi” , “April”, “Raghd”, “Jack”, “Bobby”};

Raghd\0

Jack\0

Bobby\0

students:

Fi\0 April\0 Raghd\0 Jack\0 Bobby\0

stu_arr:

0 10 20 30 40

students[2][3]; and stu_arr[2][3]; are both valid

Access two dimensional array with one index
• Two dimensional arrays are stored in memory as a large one

dimensional array

• Sometimes it is convenient to index into this array with a single
index

• First dimension is rows

• Second dimension is columns

int a[3][4];

int x;

x = a[1][3]; // this is equivalent to

x = a[7]; // this

• Formula for conversion
• index = row index * number of columns + column index

1-3

a:

0 4 8

2

char *argv[]
• argv: Argument Vector

• Pointer to array of character strings

• argv[0]:name of current program
• Number of args at least 1

• Argv[1- n]: command line arguments

• Terminated by a null pointer

1-4

cat\0

struct.c\0

0

main.c\0

argv:

Function Pointers
Functions are not variables in C

Pointers to functions are

Things you can do with a function pointer
• Assignment

• Store an array of function pointers

• Use as a function argument

• Return function pointer from a function

Ex. int (*foo)(char *, char *);
• foo is a pointer to a function that takes two char * arguments and

returns an int;

• Parenthesis needed

 int * foo(char *, char *);

foo is a function that takes two char * arguments and returns
an int *.

5

Function Pointers
Why parenthesis around function pointer name:

• precedence of * vs ()

Typedef function pointer
• typedef int (*FOO)(int, int);

• FOO now has the type pointer to function that takes two int
arguments

Store a function in a function pointer
int bar(int a, int b){

return a + b;

}

int (*foo)(int, int);

foo = &bar;

typedef int (*FOO)(int, int);

FOO f = &bar;

1-6

3

Unions
Unions are variables that use the same memory area to
hold objects of different types and possibly sizes

• Only one object can be stored at any one time

• Bits in memory do not change only how they are interpreted

• Programmers job to keep track of what type is currently being
stored in the union

Same operations as a struct:
• . for union variable member

• -> for union pointer member

• Assign to

• Copy

• Take address of

1-7

Unions

Ex.
int main() {

union tag {

float f;

int x;

char *s;

} t; // all members reference the same memory/data/bits

t.f = 999999;

printf("%f\n", t.f); // print value of float member as a float

printf("%d\n", t.x); // print value of int member as an int

}

• Can be members of structs or have structs as members

• Can only be initialized with a value of the same type as
the first member

• In this case float

1-8

Bit Fields
Bit Fields are a way to directly access bits

• Save space

• Change individual bit values without masks

• x = x | xffff;

• Implementation dependent

• Not very portable

• Fields declared as ints

• Specify unsigned or signed for better portability

• Fields behave like small integers

Ex.
Struct car{

unsigned int ignition_on: 1;

: 7 // unnamed fields used as padding

unsigned int engine_status: 3; // fields can have different width

} p_car;

p_car.ignition_on = 1; // easy to change a bits value

1-9

