
CS270 Recitation 4

C Structures

Make a subdirectory called R4 for the recitation, all files should reside in this subdirectory. Copy the

following files to the R4 directory:

https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/struct.h

https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/struct.c

https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/main.c

https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/Makefile

https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/class.txt

Then, type make to compile the program.

In this recitation, we will create a program to read student information from standard input, store it

into a class roster data structure, and display the students on standard output.

When we talk about standard input, we usually think of the user entering information from the

keyboard. However, when you’re testing a program, entering the same information over and over can

become tedious. We will automate user input by using a feature of the shell called input redirection.

The user input will come from a file. We have provided an example file (class.txt). The format is as

follows (the stuff shown in green is not part of the file). In general, the number of students in the file is

not fixed.

3 <- Number of students in the class

John <- First student’s first name (string)

52.5 <- First student’s quality points (float)

15 <- First student’s number of credits (integer)

Jane <- Second student’s first name (string)

53.2 <- Second student’s quality points (float)

14 <- Second student’s number of credits (integer)

Johnny <- Third student’s first name (string)

35.7 <- Third student’s quality points (float)

17 <- Third student’s number of credits (integer)

In order to make our C program read from this file as if it was the standard input, we will use the

following command (< is the input redirection operator):

./R4 < class.txt

Now that you’re familiar with the format of the file, let’s get to coding:

1. In the struct.h file, complete the Student structure so that it contains the following three members:

a. firstName: a string (array of characters) whose size is 80 characters.

https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/struct.h
https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/struct.c
https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/main.c
https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/Makefile
https://www.cs.colostate.edu/~cs270/.Spring17/recitations/R4/src/class.txt

b. qualityPoints: a float.

c. numCredits: an int.

This structure simply encapsulates a student.

2. In the struct.h file, declare a structure using typedef. The name of the new type should be

ClassRoster. The structure should contain the following members:

a. numStudents: an int.

b. students: a Student ** (yes, a double pointer).

At this point, try to recompile your program to make sure you don’t have errors.

3. In the main function (in main.c) do the following:

a. Read the number of students from the standard input using the scanf function. To use this

function, you must provide a format string. The call would look something like this:
scanf("%d", address of variable);

The %d indicates that we want to read an integer. Replace address of variable with an

expression that gets the address of the variable where you want to store the number of

students. By this point in the class, you should understand why we have to pass the address of

the variable to scanf. If you don’t, ask your TA.

b. Declare a variable of type ClassRoster named roster. This allocates space for a ClassRoster

structure statically (as opposed to dynamically). Then, initialize the two members of this

structure as follows:

i. The numStudents member should be initialized to the number you read in (a).

ii. The students member should be initialized to point to a dynamically allocated array of

Student pointers (not an array of Students!). The number of elements in the array should be

the number of students in the class. You want all the elements in the array to be initialized to

NULL (or 0). With this in mind, should you use malloc() or calloc()?

At this point, you should understand why the type of the students member is a double

pointer. If not, ask your TA.

c. Write a for loop that iterates as many times as dictated by the numStudents member of the

roster structure. The goal is to iterate through the students array to read students from the

standard input and store them in the array. In each iteration, call the readStudentAndEnroll()

function (this function is declared in struct.h). Pass the address of the current element of the

array. Based on this, you should understand why this function takes a double pointer.

d. Write another separate for loop that iterates as many times as dictated by the numStudents

member of the roster structure. The goal is to iterate through the students array and display

each element in the standard output. In each iteration, call the displayStudent() function (this

function is declared in struct.h). Notice that this function takes a Student (not a Student *). You

must call it accordingly, don’t change the declaration! After calling displayStudent(), call free()

to free the memory associated with this student.

e. After the last for loop, call free() to free the memory associated with the students array. Why

do we not need to call free() to free roster?

4. Try to compile your program. At this point, you shouldn’t have warnings or errors.

5. Now, we need to complete the readStudentAndEnroll() function. It may be tricky to understand

why this function takes a double pointer. First, remember that in the main function, we created an

array of Student pointers initially pointing to NULL. We can visualize this array as follows:

Then, we created a loop to call readStudentAndEnroll() to pass the address of each element of the

array. Since every element of the array is a Student pointer, and this function accepts the address

of such an element (we’ll see why shortly), the type of the parameter must be a pointer to a

Student pointer (or Student **). Suppose we are currently dealing with the second element of the

array. That means that the slot argument of the readStudentAndEnroll() function is a pointer to

the second pointer of the array:

So, why do we accept the address of a pointer in the first place? This function will create a new

Student dynamically and will populate it with some information:

Then, we want to make the current element in the array point to the new student. As we saw in a

previous recitation, if a function wants to change the original argument, we must pass it the

address of what we want it to change. So, if we want readStudentAndEnroll() to change what the

second element points to, we’d better pass the address of that pointer. Hence, we end up with a

double pointer. That way we can use the slot argument to achieve this:

With all this in mind, here’s what you should do in this function:

a. Dynamically allocate space for a new Student. We will initialize the members shortly. Do you

need a malloc() or a calloc()?

b. Read the next line from standard input using scanf, which should be the first name of the

student. The first name should be stored in the firstName member of the student you just

created.

c. Read the next line from standard input using scanf, which should be the quality points of the

student. The quality points should be stored in the qualityPoints member of the student you

just created.

d. Read the next line from standard input using scanf, which should be the number of credits of

the student. The number of credits should be stored in the numCredits member of the student

you just created.

e. Dereference the slot argument to make the original pointer point to the student that we

created. If you can come up with this one line on your own, you’re on your way to becoming a

pointer master.

6. Compile your program and resolve any errors and warnings you find. You may have to include a

missing header file to resolve some of the warnings.

7. Finally, we need to complete the displayStudent() function. This function will calculate the GPA for

a student and output the student’s name and the GPA. Here are the steps:

a. Calculate the GPA (a variable of type float) of the student using the following formula:
GPA = quality points / number of credits

b. Print a line of output with the student’s name and the GPA in the following format:
John,3.50

The GPA needs to have 2 decimal places. Don’t forget the newline character at the end.

8. Compile your program and resolve any warnings or errors you may have.

9. Now you can run the program. Here’s our output using the provided class.txt file:
John,3.50

Jane,3.80

Johnny,2.10

Feel free to test using your own text files. You should also run your program with Valgrind to check

for errors and memory leaks:
valgrind --leak-check=yes ./R4 < class.txt

In the output, you should see the following two lines:
All heap blocks were freed -- no leaks are possible

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

10. Show your work to your TA.

