Chapter 7
Assembly Language

Computing Layers

Problems

Devices

Human-Readable Machine Language

Computers like ones and zeros...
0001110010000110

Humans like symbols...
ADD R6,R2,R6 , increment index reg.

Assembler is a program that turns symbols into
machine instructions.

» ISA-specific:
close correspondence between symbols and instruction set

» mnemonics for opcodes
> labels for memory locations
- additional operations for allocating storage and initializing data

7-3

An Assembly Language Program

.
14

; Program to multiply a number by six

.
14

.ORIG
LD
LD
AND
; The inner loop
AGAIN ADD
ADD
counter
BRp
HALT
NUMBER .BLKW

SIX .FILL

14

.END

x3050

R1, SIX

R2, NUMBER

R3, R3, #0

R3, R3, R2

R1, R1, #-1
AGAIN ;
1

x0006

; R1 has constant
; R2 has wvariable
; R3 has product

; R3 += R2

; R1 is loop

conditional branch

+ variable

constant

LC-3 Assembly Language Syntax

Each line of a program is one of the following:

* an instruction
« an assember directive (or pseudo-op)
e a comment

Whitespace (between symbols) and case are ignored.

Comments (beginning with “;”) are also ignored.

An instruction has the following format:
LABEL OPCODE OPERANDS ; COMMENTS

1

optional mandatory

Opcodes and Operands
Opcodes

» reserved symbols that correspond to LC-3 instructions
 listed in Appendix A

»ex: ADD, AND, LD, LDR, ...
Operands
* registers -- specified by Rn, where n is the register number
* numbers -- indicated by # (decimal) or x (hex)
 label -- symbolic name of memory location
« separated by comma

 number, order, and type correspond to instruction format

> ex:
ADD R1,R1,R3
ADD R1,R1,#3
LD R6,NUMBER
BRz LOOP

7-6

Labels and Comments
Label

« placed at the beginning of the line
- assigns a symbolic name to the address corresponding to line
> ex:
LOOP ADD R1,R1,#-1
BRp LOOP
Comment
- anything after a semicolon is a comment
* ignhored by assembler
« used by humans to document/understand programs
« tips for useful comments:
> avoid restating the obvious, as “decrement R1”
> provide additional insight, as in “accumulate product in R6”
» use comments to separate pieces of program

7-7

Assembler Directives

Pseudo-operations
» do not refer to operations executed by program
« used by assembler
* look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with
value n

.STRINGZ |n-character |allocate n+1 locations,

string initialize w/characters and null

terminator

7-8

Trap Codes

LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’ t have to remember them.

Code | Equivalent | Description

HALT |TRAP x25 |Halt execution and print message to
console.

IN TRAP x23 | Print prompt on console,
read (and echo) one character from keybd.
Character stored in RO[7:0].

OUT |TRAP x21 | Write one character (in R0[7:0]) to console.

GETC |TRAP x20 |Read one character from keyboard.
Character stored in RO[7:0].

PUTS |TRAP x22 | Write null-terminated string to console.
Address of string is in RO.

7-9

Style Guidelines

Use the following style guidelines to improve
the readability and understandability of your programs:

1.

2.

=N

Provide a program header, with author’ s name, date, etc.,
and purpose of program.

Start labels, opcode, operands, and comments in same column
for each line. (Unless entire line is a comment.)

. Use comments to explain what each register does.
. Give explanatory comment for most instructions.
. Use meaningful symbolic names.

* Mixed upper and lower case for readability.
« ASCIItoBinary, InputRoutine, SaveR1

. Provide comments between program sections.
. Each line must fit on the page -- no wraparound or truncations.

* Long statements split in aesthetically pleasing manner.
7-10

Sample Program

Count the occurrences of a character in a file.

Remember this?

Count=0
(R2=0)

4

Ptr = 1st file character
(R3 = M[x3012])

Y

Input char

from keybd
(TRAP x23)

4

4

Load char from file
(R1=M[R3])

Incr Count
(R2=R2 + 1)

Match?
(R1 7= R0)

Y

Convert count to

ASCII character
(RO = x30, RO = R2 + RO0)

Y

Print count
(TRAP x21)

Load next char from file
(R3=R3 +1,

R1 = M[R3])

v
HALT
(TRAP x25)

7-11

Char Count in Assembly Language (1 of 3)

Ne Weoe Ne Neo Neo No No N N

.
4

.
14

Program to count occurrences of a character in a file.
Character to be input from the keyboard.

Result to be displayed on the monitor.

Program only works if no more than 9 occurrences are found.

Initialization

.ORIG x3000

AND R2, R2, #0 ; R2 is counter, initially O
LD R3, PTR ; R3 1s pointer to characters
GETC ; RO gets character input
LDR R1, R3, #0 ; Rl gets first character

Test character for end of file

TEST ADD R4, R1, #-4 ; Test for EOT (ASCII x04)

BRz OUTPUT ; If done, prepare the output

7-12

Char Count in Assembly Language (2 of 3)

14

; Test character for match.

°
’

NOT R1, R1
ADD R1, R1, RO ;
NOT R1, R1 ;

BRnp GETCHAR ;

ADD R2, R2, #1

°
14

If a match, increment count.

If match, Rl = xFFFF
If match, R1 = x0000
If no match, do not increment

; Get next character from file.

éETCHAR ADD R3, R3, #1 ;
LDR R1, R3, #0 ;

BRnzp TEST

; Output the count.

OUTPUT 1D RO, ASCII ;
ADD RO, RO, R2 ;
ouT ;
HALT ;

Point to next character.
R1 gets next char to test

Load the ASCII template
Covert binary count to ASCII
ASCII code in RO is displayed.
Halt machine

7-13

Char Count in Assembly Language (3 of 3)

; Storage for pointer and ASCII template

ASCII .FILL x0030

PTR .FILL x4000
.END

7-14

Assembly Process

Convert assembly language file (.asm)
into an executable file (.obj) for the LC-3 simulator.

 — A
fssembly_> 1st Pass —>{ 2nd Pass —>Executable
anguage Image
Program \
Symbol
_ Table
First Pass:

« scan program file

 find all labels and calculate the corresponding addresses;
this is called the symbol table

Second Pass:

« convert instructions to machine language,
using information from symbol table

7-15

First Pass: Constructing the Symbol Table

1. Find the .ORIG statement,
which tells us the address of the first instruction.

« Initialize location counter (LC), which keeps track of the
current instruction.

2. For each non-empty line in the program:
a) If line contains a label, add label and LC to symbol table.

b) Increment LC.
— NOTE: If statement is . BLKW or . STRINGZ,
increment LC by the number of words allocated.

3. Stop when .END statement is reached.

NOTE: A line that contains only a comment is considered an empty line.
7-16

Practice

Construct the symbol table for the program in Figure 7.1

(Slides 7-12 through 7-14).

Symbol

Address

Test

x3004

PTR

x3103

7-17

ORIG x3000

AND R2, R2, #0 ; init counter
LD R3, PTR ;R3 pointer to chars
GETC ; RO gets char input
LDR R1,R3, #0 ;R1 gets first char
TEST ADD R4, R1, #-4 ; Test for EOT
BRz OUTPUT ; done?
:Test character for match, if so increment count.
NOT Ri, Rt
ADD R1,R1, RO ; If match, R1 = xFFFF
NOT R1,R1 ;If match, R1 = x0000
BRnp GETCHAR ; No match, no increment
ADD R2,R2, #1
; Get next character from file.
GETCHAR ADD R3, R3, #1 ; Point to next cha.
LDR R1,R3, #0;R1 gets next char

BRnzp TEST

; Output the count.

OUTPUT LD RO, ASCIl ; Load ASCII template
ADD RO, RO, R2 ; Covert binary to ASCII
ouT ; ASClI code is displayed
HALT : Halt machine

; Storage for pointer and ASCII template

Al FILL

PTR FILL

.END

x0030
x4000

Symbol Table

Symbol

Address

TEST x3004
GETCHAR

OUTPUT

ASCII

PTR x3013

18

Second Pass: Generating Machine Language

For each executable assembly language statement,
generate the corresponding machine language instruction.

* If operand is a label,
look up the address from the symbol table.

Potential problems:

* Improper number or type of arguments

>»ex: NOT R1,#7
ADD R1,R2
ADD R3,R3,NUMBER

 Immediate argument too large
>»ex: ADD R1,R2,#1023

« Address (associated with label) more than 256 from instruction
>can’ t use PC-relative addressing mode

7-19

Practice Offset needed: x11- x01

Using the symbol table constructed earlie
translate these statements into LC-3 mac

[Symbol ptr: x3013, LD is at x3002

Statement Machine L%guage
ID R3,PTR 0010 011 00001 0000

ADD R4,R1,#-4

LDR R1,R3,#0

BRnp GETCHAR

7-20

LC-3 Assembler

Using “assemble” (Unix) or LC3Edit (Windows),
generates several different output files.

a
Binary This one gets
Listing loaded into the
(-bin) A simulator.
Hex
Listing
(.hex)
“ A
ﬁ:ﬁg&gg Object
Program Assembler > (Foi:;e_)
(.asm) .obj
Symbol
Table
o (:sym)
Listing
File

(Ist)

7-21

Object File Format

LC-3 object file contains

« Starting address (location where program must be loaded),
followed by...

* Machine instructions

Example
- Beginning of “count character” object file looks like this:

0011000000000000 <——-ORIG x3000
0101010010100000 AND R2, R2, #0
0010011000010001 <——LD R3, PTR
1111000000100011 < ——TRAP x23

[-22

Multiple Object Files

An object file is not necessarily a complete program.
« system-provided library routines
« code blocks written by multiple developers

For LC-3 simulator,
can load multiple object files into memory,
then start executing at a desired address.

« system routines, such as keyboard input, are loaded
automatically

> loaded into “system memory,” below x3000

» user code should be loaded between x3000 and xFDFF
« each object file includes a starting address
* be careful not to load overlapping object files

7-23

Linking and Loading

Loading is the process of copying an executable image
into memory.

 more sophisticated loaders are able to relocate images
to fit into available memory

* must readjust branch targets, load/store addresses

Linking is the process of resolving symbols between
independent object files.

« suppose we define a symbol in one module,
and want to use it in another

« some notation, such as .EXTERNAL, is used to tell assembler
that a symbol is defined in another module

* linker will search symbol tables of other modules to resolve
symbols and complete code generation before loading

7-24

LC-3 tools Local Modifications

The following LC-3 assembly instructions will only work with the local tools in the
CS department (they will not work with the tools at the text book web site).

Pseudoinstructions: macros that are replaced by one or more actual machine
instructions during assembly.

« .ZERO DR (AND DR,DR,#0) ,

« .COPY DR,SR1 (ADD DR,SR1,#0)

Instruction set Extension:
. PUSH
.+ POP
The authors had chosen to not implement these in accordance with the minimalist

RISC approach (see page 254).

Additional traps:
« GETS (Trap #26)
 NEWLN (Trap #27)
The authors had implemented the all 0 instruction (BRnzp with offset 0) so that it is
a NOP. In the modified tools the instruction is illegal. A NOP is sometimes used for
inserting delays.
7-25

