\qquad S.ID. \# \qquad

CS 270 - Computer Architecture Key comments in blue

Mid-term - Spring 2013

- Instructions: The exam time is 1 hour 15 minutes. CLOSED BOOK.

1. [10 pts]
a. Convert the following numbers to the other form:

Decimal	Binary (8 bit signed 2's comp.)
27	00011011
-26	11100110

b. Convert 0×21 into decimal: \qquad 33 \qquad

Area for any calculations
2. [10 pt] Convert the following numbers in the other form. Floating Point numbers use one sign bit, 8 bits for exponent and 23 bits of fraction. Note that exponent for ordinary normalized numbers is in excess 127 form.

Decimal	\mathbf{S}	Exponent	Fraction
-5.5	1	10000001	01100000000000000000000
0.25	0	01111101	00000000000000000000000
0	0	00000000	00000000000000000000000

3. [10 pts]

a. Add these two signed numbers. Verify the result by converting all numbers into decimal.

00110011	$_^{51} _$
11100110	$-{ }^{-26}-$
00011001	$\ldots-25 _$

b. Represent the signed number 00110011 using 16 bits, such that it has the same value.
-0000 000000110011 \qquad
c. Perform bit-wise OR of the two following strings.

01000101
01110000

```
01110101
```

\qquad
4. [8 pts] Give the logic values on all lines needed.

5. [8 pts] Design a combinational circuit that takes three inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and produces one output Z . The output is 1 when B and C are same, it is 0 otherwise. Show the truth table and write the minimized logic expression for Z as function of A, B, and C. Draw the logic diagram.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Z}
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$\begin{array}{lllll}\text { AlBC } & 00 & 01 & 11 & 10\end{array}$
0

1		1	
1		1	

1

\qquad
6. [8 pts] A State Machine uses two flip-flips with inputs D_{A} and D_{B} and outputs A and B. The combinational part of the circuit is described by the equations (where X is an external input and Z is an output):

$$
D_{A}=A X+B X \quad D_{B}=A^{\prime} X \quad Z=B^{\prime} X
$$

a. Draw a diagram of the complete circuit using AND, OR gates, inverters, D flip-flops, and a clock input.

Note: The complete diagram is expected which needs 2 flip-flops and clock signal.
b. Fill the state table for the circuit above.

Present state		Input	Next state		Output
A	B	X	A	\mathbf{B}	Z
0	0	0			
0	0	1		1	1
0	1	0			
0	1	1	1	1	
1	0	0			
1	0	1	1		1
1	1	0			
1	1	1	1		

7. [6 pts$]$
a. With 8 bits, what is the total number of different possible combinations (For example 11111111 is one of them) that can be formed? Ans = \qquad 256 \qquad
b. A computer uses a clock with clock-period equal to 0.25 nanoseconds. What is its clock frequency? $_^{1 / 0.25 \times 10^{-9}}=\quad __{-} \mathrm{G}_{-} \mathrm{Hz}$ (show calculation). Accept if off by a factor of 10 .
8. [6 points] Simplify using Boolean algebra. Show intermediate steps.
$\left(A B+A^{\prime}\right)^{\prime}=(A B)^{\prime} \cdot\left(A^{\prime}\right)^{\prime}=\left(A^{\prime}+B^{\prime}\right) \cdot A=A B^{\prime} \quad$ [Use Demorgan's law and simplify]

$\mathbf{X Y Z}+\mathbf{X}^{\prime} Y Z=\left(X+X^{\prime}\right) . Y Z=Y Z$

9. [9 pts] Fill in the blanks: Partial credit if off by a factor of 2

b. The maximum positive offset that you can specify in a BR instruction is __255_ .
c. The largest positive x that can be represented in instruction ADD R1, \#x is ___15_
d. What would be placed in R3 when this program segment is executed

LEA R0, String
LDR R3, R0, \#0
String .STRINGZ "Zis"
Answer: __'Z'___ (a single character)
e. Does the HALT instruction cause the computer to stop fetching any more instructions? Yes/No.

Explain \qquad calls a trap routine that transfer control to the OS \qquad
10.[12 pts] These program segments must be written efficiently with as few instructions as possible.
a. Write a program segment that will move the contents of R0 into R1. (Hint: use an arithmetic instruction)
___ADD R1, R0, \#0 \qquad
b. Write a program segment that will place decimal number 1 in register R4.
__AND R4, R4, \#0 \qquad
_ADD R4, R4, \#1 \qquad
c. . Write a program segment that will convert a number (between 0 and 9) in R1 into the corresponding ASCII character and place it in RO. Use a label ZASCII with a .fill
_LD R0, ZASCII__ Note: alternative code possible. LD R2, ZASCII ADD R0, R1, R2
_ADD R0, R1, R0 \qquad
ZASCII .fill x0030 \qquad

NAME \qquad
11. [13 pts] Here is the character count program we had seen.

```
ORIG x3000
    AND R2,R2,#0 ; R2 is counter, initialize to 0
    LD R3,PTR ; R3 is pointer to characters
    TRAP x23 ; R0 gets character input
    LDR R1,R3,#0 ; R1 gets the next character
;
; Test character for end of file
TEST ADD R4,R1,#-4 ; Test for EOT
    BRz OUTPUT ; If done, prepare the output
; Test character for match. If a match, increment count.
;
    NOT R1,R1
    ADD R1,R1,R0 ; If match, R1 = xFFFF
    NOT R1,R1 ; If match, R1 = x0000
    BRnp GETCHAR ; If no match, do not increment
    ADD R2,R2,#1
;
; Get next character from the file
GETCHAR ADD R3,R3,#1 ; Increment the pointer
    LDR R1,R3,#0 ; R1 gets the next character to test
    BRnzp TEST
;
; Output the count.
OUTPUT LD R0,ASCII ; Load the ASCII template
    ADD R0,R0,R2 ; Convert binary to ASCII
    TRAP x21 ; ASCII code in R0 is displayed
    TRAP x25 ; Halt machine
;
; Storage for pointer and ASCII template
;
ASCII .FILL x0030
PTR .FILL x4000
    END
```

a. Assemble the instruction AND R2,R2,\#0

0	1	0	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	1	0	$\mathbf{1}$	0	0	0	0	0

b. Assemble the instruction BRz OUTPUT

0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0

c. In an execution of the program the character input is ' d ', and the 10 -word file starting at location x 4000 has 3 " d ' characters. There is a breakpoint set at TRAP x21, and thus execution halts just before this instruction. What would be the values in these registers (give decimal or hex integer or character):

R0 \qquad R1 _x04 \qquad R2 3 \qquad R3__x4009 \qquad R4 \qquad

