
Chapter 13
Control Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2CS270 - Spring 2013 - Colorado State University

Control Structures

Conditional
� making a decision about which code to execute,

based on evaluated expression
if
if -else
switch

Iteration
� executing code multiple times, ending based on

evaluated expression
while
for
do-while

We will also see
Problem solving:
stepwise refinements
Examples

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3CS270 - Spring 2013 - Colorado State University

If

if (condition)
action; condition

action

T

F

Condition is a C expression,
which evaluates to TRUE (non-zero) or FALSE (zero).
Action is a C statement,
which may be simple or compound (a block).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4CS270 - Spring 2013 - Colorado State University

Example If Statements

if (x <= 10)
y = x * x + 5;

if (x <= 10) {
y = x * x + 5;
z = (2 * y) / 3;

}

if (x <= 10)
y = x * x + 5;

z = (2 * y) / 3;

compound statement;
both executed if x <= 10

only first statement is
conditional;

second statement is
always executed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Spring 2013 - Colorado State University

More If Examples

if (0 <= age && age <= 11)
kids += 1;

if (month == 4 || month == 6 ||
month == 9 || month == 11)

printf(“The month has 30 days. \n”);

if (x = 2)
y = 5;

A common programming error (= instead ==), not caught by
compiler because it’s syntactically correct.

always true,
so action is always executed!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Spring 2013 - Colorado State University

If’s Can Be Nested

if (x == 3)
if (y != 6)

{
z = z + 1;
w = w + 2;

}

if ((x == 3) && (y != 6))
{

z = z + 1;
w = w + 2;

}

is the same as...

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Spring 2013 - Colorado State University

If-else

if (condition)
action_if;

else
action_else;

condition

action_if action_else

T F

Else allows choice between
two mutually exclusive actions without re-testing condition.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8CS270 - Spring 2013 - Colorado State University

Matching Else with If
Else is always associated with closest unassociated if.

if (x != 10)
if (y > 3)

z = z / 2;
else

z = z * 2;

if (x != 10) {
if (y > 3)

z = z / 2;
else

z = z * 2;
}

is the same as...

if (x != 10) {
if (y > 3)

z = z / 2;
}
else

z = z * 2;

is NOT the same as...

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9CS270 - Spring 2013 - Colorado State University

Chaining If’s and Else’s

if (month == 4 || month == 6 ||
month == 9 || month == 11) {

printf(“Month has 30 days.\n”);
} else if (month == 1 || month == 3 ||

month == 5 || month == 7 ||
month == 8 || month == 10 ||
month == 12) {

printf(“Month has 31 days.\n”);
} else if (month == 2) {

printf(“Month has 28 or 29 days.\n”);
} else {

printf(“Don’t know that month.\n”);
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10CS270 - Spring 2013 - Colorado State University

While

while (test)
loop_body;

test

loop_body

T

F

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11CS270 - Spring 2013 - Colorado State University

Infinite Loops

The following loop will never terminate:
x = 0;
while (x < 10)

printf(“%d ”, x);

Loop body does not change condition,
so test never fails.
This is a common programming error
that can be difficult to find.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12CS270 - Spring 2013 - Colorado State University

For

for (init ; test ; re -init)
statement

init

test

loop_body

re-init

F

T
Executes loop body as long as
test evaluates to TRUE (non-zero).
Initialization and re-initialization
code includedin loop statement.

Note: Test is evaluated before executing loop body.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13CS270 - Spring 2013 - Colorado State University

Example For Loops

/* -- what is the output of this loop? -- */
for (i = 0; i <= 10; i ++)

printf("%d ", i);

/* -- what does this one output? -- */
letter = 'a';
for (c = 0; c < 26; c++)

printf("%c ", letter+c);

/* -- what does this loop do? -- */
numberOfOnes = 0;

for (bitNum = 0; bitNum < 16; bitNum++) {
if (inputValue & (1 << bitNum))

numberOfOnes++;
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14CS270 - Spring 2013 - Colorado State University

Nested Loops

Loop body can (of course) be another loop.

/* print a multiplication table */

for (mp1 = 0; mp1 < 10; mp1++) {

}

Braces aren’t necessary,
but they make the code easier to read.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15CS270 - Spring 2013 - Colorado State University

Another Nested Loop

The test for the inner loop depends on the
counter variable of the outer loop.

for (outer = 1; outer <= input; outer++) {
for (inner = 0; inner < outer; inner++) {

sum += inner;
}

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16CS270 - Spring 2013 - Colorado State University

For vs. While

In general:

For loop is preferred for counter-based loops.
� Explicit counter variable
� Easy to see how counter is modified each loop

While loop is preferred for sentinel-based loops.
� Test checks for sentinel value.

Either kind of loop can be expressed as the
other, so it’s really a matter of style and
readability.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17CS270 - Spring 2013 - Colorado State University

Do-While

do
loop_body;

while (test);

loop_body

test
T

F
Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated after executing loop body.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18CS270 - Spring 2013 - Colorado State University

Problem Solving in C

Stepwise Refinement
� as covered in Chapter 6

...but can stop refining at a higher level of
abstraction.
Same basic constructs
� Sequential -- C statements
� Conditional -- if-else, switch
� Iterative -- while, for, do-while

Problem solving:
stepwise refinements
•Calculating π
•Prime numbers
•Substring searching

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19CS270 - Spring 2013 - Colorado State University

Problem 1: Calculating Pi

Calculate π using its series expansion.
User inputs number of terms.

LL +
−

−++−+−=
12

4
)1(

7

4

5

4

3

4
4

n
nπ

Start

Initialize

Get Input

Evaluate
Series

Output
Results

Stop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20CS270 - Spring 2013 - Colorado State University

Pi: 1st refinement

Start

Initialize

Get Input

Evaluate
Series

Output
Results

Stop

Initialize
iteration count

count<terms

Evaluate
next term

count = count+1

for loop

F

T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21CS270 - Spring 2013 - Colorado State University

Pi: 2nd refinement

Initialize
iteration count

count<terms

Evaluate
next term

count = count+1

F

T

count
is odd

Add term Subtract term

add term

if-else

FT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Spring 2013 - Colorado State University

Pi: Complete Code

#include <stdio.h>
int main(int argc, char *argv[]) {

double pi = 0.0;
int numOfTerms, count;

printf("Number of terms (must be 1 or larger) : ");
scanf("%d", &numOfTerms);

for (count=1; count <= numOfTerms; count++) {
if (count % 2) {

pi += 4.0 / (2 * count - 1); // odd term, add
} else {

pi -= 4.0 / (2 * count - 1); // even term, subtract
}

}
printf("The approximate value of pi is %f\n", pi);

}

Note: First term is term 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23CS270 - Spring 2013 - Colorado State University

Problem 2: Finding Prime Numbers

Print all prime numbers less
than 100.
� A number is prime by definition

if its only divisors are 1 and
itself.

� All non-prime numbers less
than 100 have a divisor
between 2 and 10.

Start

Stop

Initialize

Print primes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24CS270 - Spring 2013 - Colorado State University

Primes: 1st refinement

Start

Stop

Initialize

Print primes

Initialize
num = 2

num < 100

Print num
if prime

num = num + 1

F

T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25CS270 - Spring 2013 - Colorado State University

Primes: 2nd refinement
Initialize
num = 2

num < 100

Print num
if prime

num = num + 1

F

T

Divide num by
2 through 10

no
divisors?

Print num

F

T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26CS270 - Spring 2013 - Colorado State University

Primes: 3rd refinement

Divide num by
2 through 10

no
divisors?

Print num

F

T

Initialize
divisor = 2

divisor <= 10

Clear flag if
num%divisor > 0

divisor =
divisor + 1

F

T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27CS270 - Spring 2013 - Colorado State University

Primes: Using a Flag Variable

To keep track of whether number was divisible,
we use a "flag" variable.
� Set prime = TRUE, assuming that number is prime.
� If a divisor divides number evenly, set prime = FALSE.

Once it is set to FALSE, it stays FALSE.
� After all divisors are checked, number is prime if

the flag variable is still TRUE.

Use macros to help readability.
#define TRUE 1

#define FALSE 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28CS270 - Spring 2013 - Colorado State University

Primes: Complete Code
#include <stdio.h>
#define TRUE 1
#define FALSE 0

int main (int argc, char*argv[]) {
int num, divisor, prime;

/* start with 2 and go up to 100 */
for (num = 2; num < 100; num ++) {

prime = TRUE; /* assume prime */

/* test whether divisible by 2 through 10 */
for (divisor = 2; divisor <= 10; divisor++) {

if (((num % divisor) == 0) && (num != divisor)) {
prime = FALSE; /* not prime */

}
}
if (prime) { /* if prime, print it */

printf("The number %d is prime\n", num);
}

}
}

Optimization: Could put
a break here to avoid some work.

(Section 13.5.2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29CS270 - Spring 2013 - Colorado State University

Switch

switch (expression) {
case const1:

action1; break;
case const2:

action2; break;
default:

action3;

}

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T

F

F

Alternative to long if-else chain.
If break is not used, then
case "falls through" to the next.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30CS270 - Spring 2013 - Colorado State University

Switch Example
/* same as month example for if-else */

switch (month) {
case 4:
case 6:
case 9:
case 11:

printf(“Month has 30 days.\n”);
break;

case 1:
case 3:
…

printf(“Month has 31 days.\n”);
break;

case 2:
printf(“Month has 28 or 29 days.\n”);
break;

default:
printf(“Don’t know that month.\n”);

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31CS270 - Spring 2013 - Colorado State University

More About Switch

Case expressions must be constant.
case i: /* illegal if i is a variable */

If no break, then next case is also executed.
switch (a) {

case 1:
printf (“A”);

case 2:
printf (“B”);

default:
printf (“C”);

}

If a is 1, prints “ABC”.
If a is 2, prints “BC”.

Otherwise, prints “C”.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32CS270 - Spring 2013 - Colorado State University

Problem 3: Searching for Substring

Have user type in a line of text and print the
number of occurrences of "the".
Reading characters one at a time using the
getchar() function to return a single character.

Don't need to store input string;
look for substring as characters are being typed.
� Similar to state machine: based on characters seen,

move toward success state or back to start state.
� Switch statement is a good match to state machine.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33CS270 - Spring 2013 - Colorado State University

Substring: State machine to flow chart

matched

't'

matched

'th'

matched

'the'

't'

'h'

'e'

't'

't'

't'

no

match

other

other

other

other

read char

match == 0

match == 1

match == 2

if 't', match=1

if 'h', match=2
if 't', match=1
else match=0

if 'e', match=3
if 't', match=1
else match=0

T

T

T
F

F

F
match == 3

F

count++
if 't', match=1
else match=0

T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34CS270 - Spring 2013 - Colorado State University

Substring: Code (Part 1)

#include <stdio.h>

main() {
char key; /* input character from user */
int match = 0; /* track of characters matched */
int count = 0; /* number of substring matches */

/* Read character until newline is typed */
while ((key = getchar()) != '\n') {

/* Action depends on number of matches so far */
switch (match) {

case 0: /* starting - no matches yet */
if (key == 't') {

match = 1;

}
break;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35CS270 - Spring 2013 - Colorado State University

Substring: Code (Part 2)

case 1: /* 't' has been matched */
if (key == 'h') {

match = 2;
} else if (key == 't') {

match = 1;
} else { match = 0; }
break;

case 2: /* ’th' has been matched */
if (key == ’e') {

match = 3;
} else if (key == 't') {

match = 1;
} else { match = 0; }
break;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36CS270 - Spring 2013 - Colorado State University

Substring: Code (Part 3)

case 3: /* 'the' has been matched */
count++; /* increment count */
if (key == 't') {

match = 1;
} else {

match = 0;

}
break;

}
}

// When we detected a newline,

// if we had just seen a "the" then increment

if (match==3) { count++; }
printf("Number of matches = %d\n", count);

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37CS270 - Spring 2013 - Colorado State University

Break and Continue

break;

� used only in switch statement or iteration statement
� breaks out of the “smallest” (loop or switch) statement

containing it to the statement immediately following
� usually used to exit a loop before terminating condition

occurs (or to exit switch statement when case is done)

continue;

� used only in iteration statement
� terminates execution of the loop body for this iteration
� loop expression is evaluated to see whether another

iteration should be performed
� if for loop, also executes the re-initializer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

38CS270 - Spring 2013 - Colorado State University

Example

What does the following loop do?

for (i = 0; i <= 20; i++) {
if (i%2 == 0) { continue; }
printf("%d ", i);

}

What would be an easier way to write this?
What happens if break instead of continue ?

