
Chapter 11
Introduction to

Programming in C

Original slides from Gregory Byrd, North
Carolina State University

Modified by Chris Wilcox, Yashwant Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2CS270 - Spring 2013 - Colorado State University

C: A High-Level Language

Gives symbolic names to values
� don’t need to know register or memory location

Provides abstraction of underlying hardware
� operations do not depend on instruction set
� example: “a = b * c”, even without multiply instruction

Provides expressiveness
� use meaningful symbols that convey meaning
� simple expressions for control patterns (if-then-else)

Enhances code readability
Safeguards against bugs
� enforce rules or conditions at compile-time or run-time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C came from B,…

3CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C among programming languages

4CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Spring 2013 - Colorado State University

Compilation vs. Interpretation
Different ways of translating high-level language
Interpretation
� interpreter = program that executes program statements
� generally one line or command at a time
� limited scope of processing
� easy to debug, make changes, view intermediate results
� languages: BASIC, LISP, Perl, Java, Matlab, C-shell

Compilation
� Compiler = program that makes an executable from code
� translates statements into machine language
� performs optimization over multiple statements
� change requires recompilation
� optimized code can be harder to debug
� languages: C, C++, Fortran, Pascal

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Spring 2013 - Colorado State University

Compilation vs. Interpretation

Consider the following algorithm:
� Get W from the keyboard.

� X = W + W

� Y = X + X

� Z = Y + Y

� Print Z to screen.

If interpreting, how many arithmetic operations?
If compiling, can we simplify the computation?
Yes, by analyzing the entire program, we can
reduce to single arithmetic operation!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Spring 2013 - Colorado State University

Compiling a C Program
Compilers have multiple phases:
Preprocessor
� macro substitution
� conditional compilation
� source-level transformations
� output is still C code

Compiler
� generates machine instructions
� output is object file

Linker
� combines object files

(including libraries)
� output is executable image

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8CS270 - Spring 2013 - Colorado State University

Compiler

Source Code Analysis
� “front end”
� parses programs to identify its pieces:

(variables, expressions, statements, functions, etc.)
� depends on language, not on target machine

Code Generation
� “back end”
� generates machine code from analyzed source
� may optimize machine code for efficiency
� very dependent on target machine

Symbol Table
� map between symbolic names and items
� like assembler, but more kinds of information

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9CS270 - Spring 2013 - Colorado State University

A Simple Java Program

import java.io.*;
public class Simple {

/* Function: main */
/* Description: counts down from user input to STOP */
public static void main (String[] args) …
{

/* variable declarations */
public static final int STOP = 0;
int counter ; /* an integer to hold count values */
int startPoint ; /* starting point for countdown */

/* prompt user for input */
System.out.println ("Enter a positive number: ");
startPoint = Integer.parseInt(in.readLine());

/* count down and print count */
for (counter =startPoint ; counter >=STOP; counter --) {

System.out.println (counter);
}

}}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10CS270 - Spring 2013 - Colorado State University

A Simple C Program

#include <stdio.h>
#define STOP 0

/* Function: main */
/* Description: counts down from user input to STOP */
int main (int argc, char *argv[])
{

/* variable declarations */
int counter ; /* an integer to hold count values */
int startPoint ; /* starting point for countdown */

/* prompt user for input */
printf ("Enter a positive number: ");
scanf ("%d", & startPoint); /* read into startPoint */

/* count down and print count */
for (counter =startPoint ; counter >=STOP; counter --) {

printf ("%d\n", counter);
}

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11CS270 - Spring 2013 - Colorado State University

Preprocessor Directives

#include <stdio.h >
� Before compiling, copy contents of header file

(stdio.h) into source code.
� Header files typically contain descriptions of

functions and variables needed by the program.
� No restrictions, could be any C source code,

including your own.
#define STOP 0
� Commonly called a macro, before compiling,

replace all instances of string "STOP" with "0"
� Used for values that are constant during execution,

but might change if the program is reused.
(requires recompilation.)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12CS270 - Spring 2013 - Colorado State University

Comments

Begins with /*, ends with */

Can span multiple lines
Cannot have a comment within a comment
c99 allows use of single line comments: //
Comments are not recognized within a string
� example: "my/*don't print this*/string"

would be printed as: my/*don't print this*/string

As before, use comments to help reader, not to
confuse or to restate the obvious

Several
versions of C

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13CS270 - Spring 2013 - Colorado State University

main Function

Every C program must have a main() function:
The main function contains the code that is
executed when the program is run.
As with all functions, the code for main lives
within brackets:
main ()

{

/* code goes here */

}

Legal syntax, but simplified to defer discussion
of return type and command line options.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14CS270 - Spring 2013 - Colorado State University

Variable Declarations

Variables are used as names for data items.
Each variable has a type, which tells the
compiler how the data is to be interpreted
(and how much space it needs).
int counter ;

int startPoint ;

int is a predefined signed integer type in C.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15CS270 - Spring 2013 - Colorado State University

Input and Output

Variety of I/O functions in C Standard Library:
Must include <stdio.h> to use them.
printf (" %d\n", counter);
� String contains characters to print and formatting

directions for variables.
� This call prints the variable counter as a decimal

integer, followed by a linefeed (\n).
scanf ("%d", & startPoint);
� String contains formatting directions for interpreting

the type of the input.
� This call reads a decimal integer and assigns it to the

variable startPoint . (The & determines the
address of the variable.)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16CS270 - Spring 2013 - Colorado State University

More About Output

Can print arbitrary expressions, not just variables
printf ("%d \n", startPoint - counter);

Print multiple expressions with a single statement
printf ("%d %d \n", counter,

startPoint - counter);

Different formatting options:
� %d decimal integer
� %x hexadecimal integer
� %c ASCII character
� %f floating-point number

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17CS270 - Spring 2013 - Colorado State University

Examples
This code:
printf ("%d is a prime number.\n", 43);
printf ("43 plus 59 in decimal is %d.\n", 43+59);
printf ("43 plus 59 in hex is %x.\n", 43+59);
printf ("43 plus 59 as a char is %c.\n", 43+59);

produces this output:
43 is a prime number.
43 plus 59 in decimal is 102.
43 plus 59 in hex is 66.
43 plus 59 as a character is f.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18CS270 - Spring 2013 - Colorado State University

Examples of Input
Many of the same formatting characters are
available for user input.
scanf ("%c", & nextChar);

� reads a single character and stores it in nextChar

scanf ("%f", & radius);

� reads a floating point number and stores it in radius

scanf ("%d %d", & length , & width);

� reads two decimal integers (separated by whitespace),
stores the first one in length and the second in width

Must use ampersand (&) for variables being
modified, pointers will be discussed later in detail.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19CS270 - Spring 2013 - Colorado State University

Compiling and Linking

Various compilers available
� cc, gcc
� includes preprocessor, compiler, and linker

Lots and lots of options!
� level of optimization, debugging
� preprocessor, linker options
� usually controlled by makefile
� intermediate files --

object (.o), assembler (.s), preprocessor (.i), etc.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20CS270 - Spring 2013 - Colorado State University

Remaining Chapters

A more detailed look at many C features:
� Variables and declarations
� Operators
� Control Structures
� Functions
� Data Structures
� I/O

Emphasis on how C is converted to assembly
language.
Also see C Reference in Appendix D.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21CS270 - Spring 2013 - Colorado State University

C Example

#include <stdio.h>
#define STOP 0

/* Function: main */
/* Description: counts down from user input to STOP */
main ()
{

/* variable declarations */
int counter ; /* an integer to hold count values */
int startPoint ; /* starting point for countdown */

/* prompt user for input */
printf ("Enter a positive number: ");
scanf ("%d", & startPoint); /* read into startPoint */

/* count down and print count */
for (counter =startPoint ; counter >=STOP; counter --){

printf ("%d\n", counter);
}

}

