Announcements

- Welcome back.
- Assignment 0 (introduce yourself) is due tonight.
- Quiz 1 will be posted on RamCT soon. Due Sunday night after a week.
- HW1 will be posted RamCT later today. Will be due in a week on Thursday.
- Photo ID requirement for midterm and final.

Leibniz 1703

Everything is 1s and 0s

Gottfried Wilhelm Leibnis. Rach dem Stich von Eticnne Ficquet (1731—94), wiedergegeben in 18. v. Seiblih, "Hiftorijches Porträtwert". Rgl. Zert, S. 65.

Chapter 2 Bits, Data Types, and Operations

Original slides from Gregory Byrd, North Carolina State University

Modified slides by Chris Wilcox, Yashwant Malaiya

Colorado State University

How condition the McGraw Hill comparise for precision represented at the analysis of the method of t

- At the lowest level, a computer is an electronic machine.
 - works by controlling the flow of electrons
- Easy to recognize two conditions:
 - 1. Higher voltage we'll call this state "1"
 - 2. Lower voltage we'll call this state "0"
- Control
 - Turning transistors on or off
 - Like a light switch to

Computer is a binary digital system.

Digital system:

• finite number of symbols

Binary (base two) system:

has two states: 0 and 1

Basic unit of information is the binary digit, or bit.

- Values with >2 states require multiple bits.
 - A collection of two bits has four possible states: 00, 01, 10, 11
 - A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
 - <u>A collection of <u>n</u> bits has <u>2</u> possible states.</u>

What kinds of data do we need to represent?

- Numbers signed, unsigned, integers, floating point, complex, rational, irrational, …
- Text characters, strings, ...
- Instructions
- Logical true, false
- Media
 - Images pixels, colors, shapes, …
 - Sound wave forms

• Data type:

representation and operations within the computer

We'll start with numbers...

Unsigned Integers

Binary numbers are just like decimal

- Except there are only two digits (0, 1) instead 10 (0, 1, 2, ..9)
- Weighted positional notation
 - like decimal numbers: "329"
 - "3" is worth 300, because of its position, while "9" is only worth 9

Unsigned Integers (cont.)

 An *n*-bit unsigned integer represents 2ⁿ values: from 0 to 2ⁿ-1.

2 ²	2 ¹	2 ⁰	Decimal
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

CS270 - Spring 2013- Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

add from right to left, propagating carry

Subtraction, multiplication, division,...

Signed Integers

• With n bits, we have 2ⁿ distinct values.

- assign about half to positive integers (1 through 2ⁿ⁻¹)
- assign about half to negative (- 2ⁿ⁻¹ through -1)
- that leaves two values: one for 0, and one extra
- Positive integers
 - just like unsigned zero in most significant (MS) bit
 00101 = 5
- Negative integers
 - sign-magnitude set sign bit to show negative
 10101 = -5
 - one's complement flip every bit to represent negative
 11010 = -5
 - in either case, MS bit indicates sign: 0=pos., 1=neg, good

Not

good

Two's Complement

Problems with sign-magnitude, 1's complement

- two representations of zero (+0 and -0)
- arithmetic circuits are complex
 - •How to add two sign-magnitude numbers?
 - e.g., try 2 + (-3)
 - •How to add to one's complement numbers?
 - e.g., try 4 + (-3)
- Solution: Two's complement.

Two's Complement

- Two's complement representation developed to make circuits easy for arithmetic.
 - for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring final carry out

Two's Complement Representation

• If number is positive or zero,

normal binary representation, zeroes in upper bit(s)

• If number is negative,

- start with positive number
- flip every bit (i.e., take the one's complement)
- then add one

CS270 - Spring 2013- Colorado State University

Two's Complement Shortcut

• To take the two's complement of a number:

- copy bits from right to left until (and including) first "1"
- flip remaining bits to the left

Two's Complement Signed Integers

- MS bit is sign bit it has weight -2^{n-1} .
- - The most negative number has no positive counterpart.

- 2 ³	2 ²	2 ¹	2 ⁰		- 2 ³	2 ²	2 ¹	2 ⁰	smallest
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Converting Binary (2's C) to Decimal

Remember this

1. If leading bit is one, take two's 2ⁿ complement to get a positive number. 0 2. Add powers of 2 that have "1" in the 2 2 4 corresponding bit positions. 3 8 3. If original number was negative, 4 16 add a minus sign. 5 32 6 64 $X = 01101000_{two}$ 7 128 $= 2^{6}+2^{5}+2^{3} = 64+32+8$ 8 256 512 9 $= 104_{ter}$ 1024

Assuming 8-bit 2's complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More Examples

Assuming 8-bit 2's complement numbers.

Converting Decimal to Binary (2's C)

- First Method: Division
- 1. Find magnitude of decimal number
- 2. Divide by two remainder is least significant bit.
- 3. Keep dividing by two until answer is zero, writing remainders from right to left.
- 4. Append a zero as the MS bit; for negative, take two's complement.

X =	: 104 _{ten}	104 div 2	=	52 r O	bit 0
		52 div 2	=	26 r O	bit 1
		26 div 2	=	13 r O	bit 2
		13 div 2	=	6 r 1	bit 3
		6 div 2	=	3 r O	bit 4
		3 div 2	=	1 r 1	bit 5
		1 div 2	=	0 r 1	bit 6
V	01101000000		~ .		

Converting Decimal to Binary (2's C)

Second Method: Subtract Powers of Two

1.	Find magnitude of decimal number.	n	2 ⁿ				
2.	Subtract largest power of two		1				
	less than or equal to number.						
3.	Put a one in the corresponding bit position.	2	4				
Λ	Koop aubtracting uptil regult in zoro	3	8				
4.	Keep subtracting until result is zero.	4	16				
5.	Append a zero as MS bit;	5	32				
	if original was negative, take two's complement.	6	64				
		7	128				
	$X = 104_{ten}$ 104 - 64 = 40 bit 6	8	256				
	40 - 32 = 8 bit 5	9	512				
	8 - 8 = 0 bit 3	10	1024				
	$K = 01101000_{two}$						

Operations: Arithmetic and Logical

- Recall: data types include representation and operations.
- 2's complement is a good representation for signed integers, now we need arithmetic operations:
 - Addition (including overflow)
 - Subtraction
 - Sign Extension
- Multiplication and division can be built from these basic operations.
- Logical operations are also useful:
 - AND
 - OR
 - NOT

Will see them soon

Addition

- As we've discussed, 2's comp. addition is just binary addition.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that sum fits in n-bit 2's comp. representation

+ 1110000 (-16) + (-9) (-9) (-19) (-19)

Assuming 8-bit 2's complement numbers.

Subtraction

Negate subtrahend (2nd no.) and add.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that difference fits in n-bit 2's comp. representation

	01101000	(104)	1 1110110	(-10)
	0010000	(16)		(-9)
	01101000	(104)	1 1110110	(-10)
+_	<u>11110000</u>	(-16)	+	(9)
	01011000	(88)		(-1)

Assuming 8-bit 2's complement numbers.

Sign Extension

- To add two numbers, we must represent them with the same number of bits.
- If we just pad with zeroes on the left:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	00001100	(12, not -4)

Instead, replicate the MS bit -- the sign bit:

<u>4-bit</u>		<u>8-bit</u>	
0100	(4)	00000100	(still 4)
1100	(-4)	11111 100	(still -4)

Overflow

If operands are too big, then sum cannot be represented as an *n*-bit 2's comp number.

	01000	(8)	1 1000	(-8)
+	<u>0</u> 1001	(9)	+ <u>10111</u>	(-9)
	1 0001	(-15 <mark>?</mark>)	01111	(+15)

• We have overflow if:

- signs of both operands are the same, and
- sign of sum is different.
- Another test -- easy for hardware:
 - carry into MS bit does not equal carry out

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Logic Operations

George Boole (1815-1864)

Claude Shannon (1916-2001)

Logical Operations

Java/C: &&, ||, !

Operations on logical TRUE or FALSE

 two states -- takes one bit to represent: TRUE=1, FALSE=0

Α	В	A AND B	Α	В	AORB	Α	A TOM
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

View n-bit number as a collection of n logical values

operation applied to each bit independently

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Logical bitwise Operations

11000101
ND 00001111
00000101
11000101 OR <u>00001111</u> 11001111
IOT <u>11000101</u> nt 00111010

Hexadecimal Notation

 It is often convenient to write binary (base-2) numbers in hexadecimal (base-16) instead.

- fewer digits four bits per hex digit
- less error prone no long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	А	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	Е	14
0111	7	7	1111	F	15

Converting from Binary to Hexadecimal

Every four bits is a hex digit.

start grouping from right-hand side
 011 1010 1000 1111 0100 1101

This is not a new machine representation, just a convenient way to write the number.

Fractions: Fixed-Point

How can we represent fractions?

- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2's comp addition and subtraction still work (if binary points are aligned)

$$2^{-1} = 0.5$$

$$2^{-2} = 0.25$$

$$2^{-3} = 0.125$$

$$-2^{-3} = 0.125$$

$$-1111110.110 (40.625)$$

$$+ 1111110.110 (-1.25)$$

$$00100111.011 (39.375)$$

Only internal use

No new operations -- same as integer arithmetic.

Floating-Point Numbers

- Large values: 6.023 x 10²³ -- requires 79 bits
- Small values: 6.626 x 10⁻³⁴ -- requires >110 bits
- Use equivalent of "scientific notation": F x 2^E
- Must have F (fraction), E (exponent), and sign.
- IEEE 754 Floating-Point Standard (32-bits):

CS270 - Spring 2013- Colorado State University

Floating Point Example

• Single-precision IEEE floating point number:

- - Sign is 1 number is negative.
 - Exponent field is 01111110 = 126 (decimal).
 - Fraction implies 1.100000000000... = 1.5 (decimal).

Always 1 for normalized numbers

• Value = -1.5 x $2^{(126-127)}$ = -1.5 x 2^{-1} = -0.75

Floating-Point Operations

- Special cases: 0 (all zeros), infinity, etc.
- Will regular 2's complement arithmetic work for Floating Point numbers?
- (*Hint*: In decimal, how do we compute 3.07 x 10¹² + 9.11 x 10⁸?)

Text: ASCII Characters

New line: Unix: LF Windows: LF+CR

• ASCII: Maps 128 characters to 7-bit code.

printable and non-printable (ESC, DEL, ...) characters

00 nul	10 dle	20 s	sp	30	0	40	G	50	Ρ	60	`	70	р
01 soh	11 dc1	21	!	31	1	41	А	51	Q	61	а	71	q
02 stx	12 dc2	22	"	32	2	42	В	52	R	62	b	72	r
03 etx	13 dc3	23	#	33	3	43	С	53	S	63	С	73	S
04 eot	14 dc4	24	\$	34	4	44	D	54	Т	64	d	74	t
05 enq	15 nak	25	0/0	35	5	45	Ε	55	U	65	е	75	u
06 ack	16 syn	26	&	36	6	46	F	56	V	66	f	76	V
07 bel	17 etb	27	۲	37	7	47	G	57	W	67	g	77	W
08 bs	18 can	28	(38	8	48	Η	58	Х	68	h	78	Х
09 ht	19 em	29)	39	9	49	I	59	Y	69	i	79	У
0a lf	la sub	2a	*	3a	:	4a	J	5a	Ζ	6a	j	7a	Z
0b vt	1b esc	2b	+	3b	;	4b	Κ	5b	[6b	k	7b	{
0c np	lc fs	2c	,	Зc	<	4c	L	5c	\setminus	6c	l	7c	1
0d cr	ld gs	2d	-	3d	=	4d	М	5d]	6d	m	7d	}
0e so	le rs	2e	•	3e	>	4e	Ν	5e	^	6e	n	7e	~
Of si	lf us	2f	/	Зf	?	4f	0	5f	_	6f	0	7f	del
			/						_				del

Interesting Properties of ASCII Code

- What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?
- What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough? (http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

Other Data Types

Text strings

- sequence of characters, terminated with NULL (0)
- typically, no hardware support
- Image: several formats
 - array of pixels
 - monochrome: one bit (1/0 = black/white)
 - color: red, green, blue (RGB) components
 - other properties: transparency
 - hardware support:
 - typically none, in older general-purpose processors
 - MMX -- multiple 8-bit operations on 32-bit word
- Sound, video
 - Several file formats

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Data Types

It is a simple processor

- Some data types are supported directly by the instruction set architecture.
- For LC-3, there is only one hardware-supported data type:
 - 16-bit 2's complement signed integer
 - Operations: ADD, AND, NOT
- Other data types are supported by <u>interpreting</u> 16-bit values as logical, text, fixed-point, etc., in the software that we write.