Announcements

- Welcome back.
- Assignment 0 (introduce yourself) is due tonight.
- Quiz 1 will be posted on RamCT soon. Due Sunday night after a week.
- HW1 will be posted RamCT later today. Will be due in a week on Thursday.
- Photo ID requirement for midterm and final.

Everything is 1s and 0s

Chapter 2 Bits, Data Types, and Operations

Original slides from Gregory Byrd, North Carolina State University
Modified slides by Chris Wilcox, Yashwant Malaiya
Colorado State University

How dro we represent data in a computer?

- At the lowest level, a computer is an electronic machine.
- works by controlling the flow of electrons
- Easy to recognize two conditions:

1. Higher voltage - we'll call this state " 1 "
2. Lower voltage - we'll call this state " 0 "

- Control
- Turning transistors on or off
- Like a light switch to

Computer is a binary digital system.

Digital system:

- finite number of symbols

- Basic unit of information is the binary digit, or bit.
- Values with >2 states require multiple bits.
- A collection of two bits has four possible states: $00,01,10,11$
- A collection of three bits has eight possible states: $000,001,010,011,100,101,110,111$
- A collection of n bits has $\underline{2}^{n}$ possible states.

What kinds of data do we need to represent?

- Numbers - signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Text - characters, strings, ...
- Instructions
- Logical - true, false
- Media
- Images - pixels, colors, shapes, ...
-Sound - wave forms
- Data type:
- representation and operations within the computer
- We'll start with numbers...

Unsigned Integers

- Binary numbers are just like decimal
- Except there are only two digits $(0,1)$ instead $10(0,1,2, . .9)$
- Weighted positional notation
- like decimal numbers: "329"
" " 3 " is worth 300 , because of its position, while " 9 " is only worth 9

Unsigned Integers (cont.)

- An n-bit unsigned integer represents 2^{n} values: from 0 to $2^{n}-1$.

2^{2}	2^{1}	2^{0}	Decimal
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Unsigned Binary Arithmetic

- Base-2 addition - just like base-10!
- add from right to left, propagating carry

10111
 $+\quad 111$

Subtraction, multiplication, division,...

Signed Integers

- With n bits, we have 2^{n} distinct values.
- assign about half to positive integers (1 through 2^{n-1})
- assign about half to negative (- 2^{n-1} through -1)
- that leaves two values: one for 0 , and one extra
- Positive integers
- just like unsigned - zero in most significant (MS) bit 00101 = 5
- Negative integers
- sign-magnitude - set sign bit to show negative good $10101=-5$
- one's complement - flip every bit to represent negative $11010=-5$
- in either case, MS bit indicates sign: 0=pos., 1=neg. good

Two's Complement

- Problems with sign-magnitude, 1's complement
- two representations of zero (+0 and -0)
- arithmetic circuits are complex
- How to add two sign-magnitude numbers?
- e.g., try $2+(-3)$
- How to add to one's complement numbers?
- e.g., try 4 + (-3)
- Solution: Two's complement

Two's Complement

- Two's complement representation developed to make circuits easy for arithmetic.
- for each positive number (X), assign value to its negative $(-X)$,
such that $X+(-X)=0$ with "normal" addition, ignoring final carry out

$$
\begin{array}{r}
00101 \text { (5) } \quad+\begin{array}{r}
01001 \\
+\quad 11011 \\
\hline 00000(-5)
\end{array}(0) \\
\hline 00000
\end{array}
$$

Two's Complement Representation

- If number is positive or zero,
- normal binary representation, zeroes in upper bit(s)
- If number is negative,
- start with positive number
- flip every bit (i.e., take the one's complement)
- then add one

Two's Complement Shortcut

- To take the two's complement of a number:
- copy bits from right to left until (and including) first "1"
- flip remaining bits to the left

Two's Complement Signed Integers

- MS bit is sign bit - it has weight -2^{n-1}.
- Range of an n-bit number: - 2^{n-1} through $2^{n-1}-1$.
- The most negative number has no positive counterpart.

-2^{3}	2^{2}	2^{1}	2^{0}	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
				CS270 - Spring 2013

-2^{3}	2^{2}	2^{1}	2^{0}	
1	0	0	0	-8
1	0	0	1	-7
1	0	1	0	-6
1	0	1	1	-5
1	1	0	0	-4
1	1	0	1	-3
1	1	1	0	-2
1	1	1	1	-1

Converting Binary (2's C) to Decimal

1. If leading bit is one, take two's complement to get a positive number.
2. Add powers of 2 that have " 1 " in the corresponding bit positions.
3. If original number was negative,

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Assuming 8-bit 2's complement numbers.

More Examples

$$
\begin{aligned}
& \mathrm{X}=00100111_{\text {two }} \\
& =2^{5}+2^{2}+2^{1}+2^{0}=32+4+2+1 \\
& =39_{\text {ten }} \\
& \mathrm{X}={11100110_{\text {two }}}^{\text {on }} \\
& -X=00011010 \\
& =2^{4}+2^{3}+2^{1}=16+8+2 \\
& =26_{\text {ten }} \\
& X=-26_{\text {ten }}
\end{aligned}
$$

Assuming 8-bit 2's complement numbers.

Converting Decimal to Binary (2's C)

- First Method: Division

1. Find magnitude of decimal number
2. Divide by two - remainder is least significant bit.
3. Keep dividing by two until answer is zero, writing remainders from right to left.
4. Append a zero as the MS bit; for negative, take two's complement.

Converting Decimal to Binary (2's C)

- Second Method: Subtract Powers of Two

1. Find magnitude of decimal number.
2. Subtract largest power of two less than or equal to number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit; if original was negative, take two's complement.
$X=104_{\text {ten }}$
$X=01101000_{\text {two }}$

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Operations: Arithmetic and Logical

- Recall: data types include representation and operations.
- 2's complement is a good representation for signed integers, now we need arithmetic operations:
- Addition (including overflow)
- Subtraction
- Sign Extension
- Multiplication and division can be built from these basic operations.
- Logical operations are also useful:
- AND
- OR
- NOT

Addition

- As we've discussed, 2's comp. addition is just binary addition.
- assume all integers have the same number of bits
- ignore carry out
- for now, assume that sum fits in n-bit 2's comp. representation

$$
\begin{aligned}
& 01101000 \text { (104) } 11110110 \text { (-10) } \\
& +\ldots 11110000(-16)+\ldots \quad(-9) \\
& 01011000 \text { (88) } \\
& \text { (-19) }
\end{aligned}
$$

Assuming 8-bit 2's complement numbers.

Subtraction

- Negate subtrahend (2nd no.) and add.
- assume all integers have the same number of bits
- ignore carry out
- for now, assume that difference fits in n-bit 2's comp. representation

$$
\left.\begin{array}{r}
01101000(104) \\
-\quad 00010000(16) \\
\hline 01101000(104) \\
+\quad 11110000(-16) \\
\hline
\end{array} \quad+\begin{array}{l}
1110110(-10) \\
(-9) \\
(-10) \\
(88)
\end{array}\right)
$$

Assuming 8-bit 2's complement numbers.

Sign Extension

- To add two numbers, we must represent them with the same number of bits.
- If we just pad with zeroes on the left:

4-bit	\quad8-bit 0100		
1100	(4)	00000100	(still 4)
	00001100	(12, not -4)	

- Instead, replicate the MS bit -- the sign bit:

4-bit
0100 (4)
1100 (-4)

8 -bit
00000100 (still 4)
11111100 (still -4)

Overflow

- If operands are too big, then sum cannot be represented as an n-bit 2's comp number.

$$
\begin{array}{rr}
01000(8) & 11000 \\
+\quad 01001 & (9) \\
\hline 10001 & (-15 ?) \\
\hline 10111 & (-9) \\
\hline 01111 & (+15)
\end{array}
$$

- We have overflow if:
- signs of both operands are the same, and
- sign of sum is different.
- Another test -- easy for hardware:
- carry into MS bit does not equal carry out

Logic Operations

George Boole (1815-1864)

Claude Shannon (1916-2001)

- Operations on logical TRUE or FALSE
- two states -- takes one bit to represent: TRUE=1, FALSE=0

- View n-bit number as a collection of n logical values
- operation applied to each bit independently

Logical bitwise Operations

Java/C: \&, |, ~

- AND
- useful for clearing bits

11000101
AND $\quad 00001111$

- AND with zero $=0$
-AND with one $=$ no change
11000101
- OR
- useful for setting bits
-OR with zero = no change
$\rho O R$ with one $=1$
- NOT

NOT_ 11000101

- unary operation -- one argument 00111010
- flips every bit

Hexadecimal Notation

- It is often convenient to write binary (base-2) numbers in hexadecimal (base-16) instead.
- fewer digits - four bits per hex digit
- less error prone - no long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	A	10
0011	3	3	1011	B	11
0100	4	4	1100	C	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Converting from Binary to Hexadecimal

- Every four bits is a hex digit.
- start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Fractions: Fixed-Point

- How can we represent fractions?
- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2's comp addition and subtraction still work (if binary points are aligned)

$$
\begin{aligned}
2^{-1} & =0.5 \\
2^{-2} & =0.25 \\
-2^{-3} & =0.125
\end{aligned}
$$

$$
00101000.101 \text { (40.625) }
$$

$$
+11111110.110(-1.25)
$$

$$
00100111.011 \text { (39.375) }
$$

No new operations -- same as integer arithmetic.

Floating-Point Numbers

- Large values: 6.023×10^{23}-- requires 79 bits
- Small values: 6.626×10^{-34}-- requires >110 bits
- Use equivalent of "scientific notation": F x 2^{E}
- Must have F (fraction), E (exponent), and sign.
- IEEE 754 Floating-Point Standard (32-bits):
$\xrightarrow[\text { S Exponent }]{\text { 1b. } 8 b} \xrightarrow[\text { Fraction }]{236}$
$N=(-1)^{S} \times 1$.fraction $\times 2^{\text {exponent }-127}, 1 \leq$ exponent ≤ 254
$N=(-1)^{S} \times 0$.fraction $\times 2^{-126}$, exponent $=0$

Floating Point Example

- Single-precision IEEE floating point number:
© $\underline{1} 01111110110000000000000000000000$

- Sign is 1 - number is negative.
- Exponent field is $01111110=126$ (decimal).
- Fraction implies $1.100000000000 \ldots=1.5$ (decimal).

Always 1 for normalized numbers

- Value $=-1.5 \times 2^{(126-127)}=-1.5 \times 2^{-1}=-0.75$

Floating-Point Operations

- Special cases: 0 (all zeros), infinity, etc.
- Will regular 2's complement arithmetic work for Floating Point numbers?
- (Hint: In decimal, how do we compute $3.07 \times 10^{12}+9.11 \times$ $10^{8} ?$)

Text: ASCII Characters New line:
 Unix: LF
 Windows: LF+CR

- ASCII: Maps 128 characters to 7-bit code.
- printable and non-printable (ESC, DEL, ...) characters

00 nul	10 dle	20	sp	30	0	40	@	50	P	60		70	p
01 soh	11 dc 1	21	!	31	1	41	A	51	Q	61	a	7	-
02 stx	12 dc 2	22	"	32	2	42	B	52	R	62	b	72	r
03 etx	13 dc 3	23	\#	33	3	43	C	53	S	63	C	73	S
04 eot	14 dc 4	24	\$	34	4	44	D	54	T	64	d	74	t
05 eng	15 nak	25	\%	35	5	45	E	55	U	65	e	75	u
06 ack	16 syn	26	\&	36	6	46	F	56	V	66	f	76	v
07 bel	17 etb	27		37	7	47	G	57	W	67	9	77	W
08 bs	18 can	28	(38	8	48	H	58	X	68	h	78	x
09 ht	19 em	29)	39	9	49	I	59	Y	69	i	79	y
0 ab lf	1 a sub	2 a		3 a	:	4 a	J	5 a	Z	6 a	j	7	z
Ob vt	1b esc	2b	+	3b	;	4b	K	5b	[6b	k	7 b	
Oc np	1 c fs	2c	,	3 c	$<$	4 c	L	5 c	\backslash	6 c	1		
Od cr	1 d gs	2d	-	3d	$=$	40	M	$5 d$]	6d	m	7	
Oe so	le rs	$2 e$		3 e	>	4 e	N	5 e	^	6 e	n		
Of si	If us	$2 f$	1	3 f	?	4 f	0	5 f		6 f	\bigcirc		del

CS270 - Spring 2013- Colorado State University

Interesting Properties of ASCII Code

- What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?
- What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough?
(http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

Other Data Types

- Text strings
- sequence of characters, terminated with NULL (0)
- typically, no hardware support
- Image: several formats
- array of pixels
- monochrome: one bit ($1 / 0=$ black/white)
- color: red, green, blue (RGB) components
- other properties: transparency
- hardware support:
- typically none, in older general-purpose processors
- MMX -- multiple 8-bit operations on 32-bit word
- Sound, video
- Several file formats
- Some data types are supported directly by the instruction set architecture.
- For LC-3, there is only one hardware-supported data type:
- 16-bit 2's complement signed integer
- Operations: ADD, AND, NOT
- Other data types are supported by interpreting 16 -bit values as logical, text, fixed-point, etc., in the software that we write.

