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Announcements 

Welcome back. 

Assignment 0 (introduce yourself) is due tonight.   

Quiz 1 will be posted on RamCT soon.  Due Sunday 

night after a week. 

HW1 will be posted RamCT later today. Will be due in a 

week on Thursday.   

Photo ID requirement for midterm and final. 
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Chapter 2 

Bits, Data Types, 

and Operations 

Original slides from Gregory Byrd, North Carolina State 

University 

Modified slides by Chris Wilcox, Yashwant Malaiya    

Colorado State University 

Everything is 

1s and 0s 

Leibniz   1703 
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How do we represent data in a 

computer? 

At the lowest level, a computer is an electronic 

machine. 

 works by controlling the flow of electrons 

Easy to recognize two conditions: 

1. Higher voltage – we’ll call this state “1” 

2. Lower voltage – we’ll call this state “0” 

Control 

 Turning transistors on or off 

 Like a light switch to 
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Computer is a binary digital system. 

Basic unit of information is the binary digit, or bit. 

Values with >2 states require multiple bits. 
 A collection of two bits has four possible states: 

00, 01, 10, 11 

 A collection of three bits has eight possible states: 

000, 001, 010, 011, 100, 101, 110, 111 

 A collection of n bits has 2n possible states. 

Binary (base two) system: 

• has two states: 0 and 1 

 

Digital system: 

• finite number of symbols 
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What kinds of data do we need to 

represent? 

 Numbers – signed, unsigned, integers, floating point, 

complex, rational, irrational, … 

 Text – characters, strings, … 

 Instructions 

 Logical – true, false 

 Media 

Images – pixels, colors, shapes, … 

Sound – wave forms 

Data type:  
 representation and operations within the computer 

We’ll start with numbers… 
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Unsigned Integers 

Binary numbers are just like decimal 

 Except there are only two digits (0, 1) instead 10 (0, 1, 2, ..9)  

Weighted positional notation 

 like decimal numbers: “329” 

 “3” is worth 300, because of its position, while “9” is only 

worth 9 

329 

102 101 100 

101 

22 21 20 

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5 

most 

significant 

least 

significant bit  
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Unsigned Integers (cont.) 

An n-bit unsigned integer represents 2n values: 

from 0 to 2n-1. 

22 21 20 Decimal 

0 0 0 0 

0 0 1 1 

0 1 0 2 

0 1 1 3 

1 0 0 4 

1 0 1 5 

1 1 0 6 

1 1 1 7 
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Unsigned Binary Arithmetic 

Base-2 addition – just like base-10! 

 add from right to left, propagating carry 

  10010  10010  1111 

  +  1001  + 1011 + 1 

  11011  11101  10000 

 

    10111 

   + 111 

carry 

Subtraction, multiplication, division,… 
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Signed Integers 

With n bits, we have 2n distinct values. 
 assign about half to positive integers (1 through 2n-1) 

 assign about half to negative (- 2n-1 through -1) 

 that leaves two values: one for 0, and one extra 

Positive integers 
 just like unsigned – zero in most significant (MS) bit 

00101 = 5 

Negative integers 
 sign-magnitude – set sign bit to show negative 

10101 = -5 

 one’s complement – flip every bit to represent negative 

11010 = -5 

 in either case, MS bit indicates sign: 0=pos., 1=neg. 

Not 

good 

Not 

good 



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

10 CS270 - Spring 2013- Colorado State University 

Two’s Complement 

Problems with sign-magnitude, 1’s complement 
 two representations of zero (+0 and –0) 

 arithmetic circuits are complex 

How to add two sign-magnitude numbers? 
 e.g., try 2 + (-3) 

How to add to one’s complement numbers?  
 e.g., try 4 + (-3) 

Solution: Two’s complement 
Used 

practically 

universally 
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Two’s Complement 

Two’s complement representation developed to 
make circuits easy for arithmetic. 
 for each positive number (X), assign value to its 

negative (-X), 
such that X + (-X) = 0 with “normal” addition, ignoring 
final carry out 

  00101 (5)  01001 (9) 

 + 11011 (-5) +  (-9) 

  00000 (0)  00000 (0) 
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Two’s Complement Representation 

If number is positive or zero, 

 normal binary representation, zeroes in upper bit(s) 

If number is negative, 

 start with positive number 

 flip every bit (i.e., take the one’s complement) 

 then add one 

  00101 (5)  01001 (9) 

  11010 (1’s comp)   (1’s comp) 

 + 1  + 1  

  11011 (-5)   (-9) 



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

13 CS270 - Spring 2013- Colorado State University 

Two’s Complement Shortcut 

To take the two’s complement of a number: 

 copy bits from right to left until (and including) first “1” 

 flip remaining bits to the left 

  011010000   011010000 

  100101111 (1’s comp)  

 + 1    

  100110000   100110000 

(copy) (flip) 
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Two’s Complement Signed Integers 

MS bit is sign bit – it has weight –2n-1. 

Range of an n-bit number: -2n-1 through 2n-1 – 1. 

 The most negative number has no positive counterpart. 

-23 22 21 20 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 2 

0 0 1 1 3 

0 1 0 0 4 

0 1 0 1 5 

0 1 1 0 6 

0 1 1 1 7 

-23 22 21 20 

1 0 0 0 -8 

1 0 0 1 -7 

1 0 1 0 -6 

1 0 1 1 -5 

1 1 0 0 -4 

1 1 0 1 -3 

1 1 1 0 -2 

1 1 1 1 -1 

smallest 
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Converting Binary (2’s C) to Decimal 

1. If leading bit is one, take two’s 

complement to get a positive number. 

2. Add powers of 2 that have “1” in the 

corresponding bit positions. 

3. If original number was negative, 

add a minus sign. 

n 2n 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 

 X  =  01101000two 

  = 26+25+23 = 64+32+8 

  = 104ten 

Assuming 8-bit 2’s complement numbers. 

Remember 

this 
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More Examples 

n 2n 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 

Assuming 8-bit 2’s complement numbers. 

 X  =  00100111two 

  = 25+22+21+20 = 32+4+2+1 

  = 39ten 

 X  =  11100110two  

 -X = 00011010 

  = 24+23+21 = 16+8+2 

  = 26ten 

 X = -26ten 



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

17 CS270 - Spring 2013- Colorado State University 

Converting Decimal to Binary (2’s C) 

First Method: Division 

1. Find magnitude of decimal number 

2. Divide by two – remainder is least significant bit. 

3. Keep dividing by two until answer is zero, 

writing remainders from right to left. 

4. Append a zero as the MS bit; 

for negative, take two’s complement. 

 X  =  104ten 104 div 2 = 52  r 0 bit 0 

    52 div 2 = 26  r 0 bit 1 

    26 div 2 = 13  r 0 bit 2 

    13 div 2 =   6  r 1 bit 3 

            6 div 2 =   3  r 0 bit 4 

     3 div 2 =   1  r 1 bit 5 

    1 div 2 =   0  r 1 bit 6

 X = 01101000two  

n 2n 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 
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Converting Decimal to Binary (2’s C) 

Second Method: Subtract Powers of Two 

1. Find magnitude of decimal number. 

2. Subtract largest power of two  

less than or equal to number. 

3. Put a one in the corresponding bit position. 

4. Keep subtracting until result is zero. 

5. Append a zero as MS bit; 

if original was negative, take two’s complement. 

 X  =  104ten 104 - 64 = 40 bit 6 

    40 - 32 = 8 bit 5 

    8 - 8 = 0 bit 3 

 X = 01101000two  

n 2n 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 
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Operations: Arithmetic and Logical 

Recall:  data types include representation and 
operations. 

2’s complement is a good representation for signed 
integers, now we need arithmetic operations: 
 Addition (including overflow) 

 Subtraction 

 Sign Extension 

Multiplication and  division can be built from these  
basic operations. 

Logical operations are also useful: 
 AND 

 OR 

 NOT 

Will see 

them soon 
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Addition 

As we’ve discussed, 2’s comp. addition is just  

binary addition. 

 assume all integers have the same number of bits 

 ignore carry out 

 for now, assume that sum fits in n-bit 2’s comp. 

representation 

  01101000 (104)  11110110 (-10) 

 + 11110000 (-16) +  (-9) 

  01011000 (88)   (-19) 

Assuming 8-bit 2’s complement numbers. 
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Subtraction 

Negate subtrahend (2nd no.) and add. 

 assume all integers have the same number of bits 

 ignore carry out 

 for now, assume that difference fits in n-bit 2’s comp. 

representation 

  01101000 (104)  11110110 (-10) 

 - 00010000 (16)  -  (-9) 

  01101000 (104)  11110110 (-10) 

 + 11110000 (-16) +  (9) 

  01011000 (88)   (-1) 

Assuming 8-bit 2’s complement numbers. 
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Sign Extension 

To add two numbers, we must represent them 

with the same number of bits. 

If we just pad with zeroes on the left: 

 

 
 

Instead, replicate the MS bit -- the sign bit: 

 

4-bit  8-bit 
0100 (4) 00000100 (still 4) 

1100 (-4) 00001100 (12, not -4) 

4-bit  8-bit 
0100 (4) 00000100 (still 4) 

1100 (-4) 11111100 (still -4) 
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Overflow 

If operands are too big, then sum cannot be 

represented as an n-bit 2’s comp number. 

 

 

 

We have overflow if: 

 signs of both operands are the same, and 

 sign of sum is different. 

Another test -- easy for hardware: 

 carry into MS bit does not equal carry out 

  01000 (8)  11000 (-8) 

 + 01001 (9) + 10111 (-9) 

  10001 (-15 ?)  01111 (+15) 
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George Boole (1815-1864) Claude Shannon (1916-2001) 
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Logical Operations 

Operations on logical TRUE or FALSE 

 two states -- takes one bit to represent: TRUE=1, 

FALSE=0 

 

 

 

 

 

View n-bit number as a collection of n logical values 

 operation applied to each bit independently 

A B A AND B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

A B A OR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

A NOT A 

0 1 

1 0 

Java/C: &&, ||, ! 
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Logical bitwise Operations 

AND 
 useful for clearing bits 

AND with zero = 0 

AND with one = no change 

OR 
 useful for setting bits 

OR with zero = no change 

OR with one = 1 

NOT 
 unary operation -- one argument 

 flips every bit 

  11000101  

AND 00001111  

  00000101  

  11000101  

 OR 00001111  

  11001111  

NOT 11000101  

  00111010  

Java/C: &, |, ~ 
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Hexadecimal Notation 

It is often convenient to write binary (base-2) 

numbers in hexadecimal (base-16) instead. 

 fewer digits - four bits per hex digit 

 less error prone - no long string of 1’s and 0’s 

Binary Hex Decimal 

0000 0 0 

0001 1 1 

0010 2 2 

0011 3 3 

0100 4 4 

0101 5 5 

0110 6 6 

0111 7 7 

Binary Hex Decimal 

1000 8 8 

1001 9 9 

1010 A 10 

1011 B 11 

1100 C 12 

1101 D 13 

1110 E 14 

1111 F 15 
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Converting from Binary to Hexadecimal 

Every four bits is a hex digit. 

 start grouping from right-hand side 
011 1010 1000 1111 0100 1101 

0111 

7 D 4 F 8 A 3 

This is not a new machine representation, 

just a convenient way to write the number. 
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Fractions: Fixed-Point 

How can we represent fractions? 

 Use a “binary point” to separate positive from 

negative powers of two -- just like “decimal point.” 

 2’s comp addition and subtraction still work (if binary 

points are aligned) 

  00101000.101 (40.625) 

 + 11111110.110 (-1.25) 

  00100111.011 (39.375) 

2-1 = 0.5 

2-2 = 0.25 

2-3 = 0.125 

No new operations -- same as integer arithmetic. 

Only internal 

use 
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Floating-Point Numbers 

Large values: 6.023 x 1023 -- requires 79 bits 

Small values: 6.626 x 10-34 -- requires >110 bits 

Use equivalent of “scientific notation”: F x 2E 

Must have F (fraction), E (exponent), and sign. 

IEEE 754 Floating-Point Standard (32-bits): 

S Exponent Fraction 

1b 8b 23b 

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(

126

127exponent

S

S

N

N

Single 

precision 
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Floating Point Example 

Single-precision IEEE floating point number: 

 1 01111110 10000000000000000000000 

 

 

 Sign is 1 – number is negative. 

 Exponent field is 01111110 = 126 (decimal). 

 Fraction implies  1.100000000000… = 1.5 (decimal). 

 

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75 

sign exponent fraction 

Always 1 for normalized numbers 
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Floating-Point Operations 

Special cases: 0 (all zeros), infinity, etc. 

Will regular 2’s complement arithmetic work for  

Floating Point numbers? 

(Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x 

108?) 
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Text: ASCII Characters 

ASCII: Maps 128 characters to 7-bit code. 

 printable and non-printable (ESC, DEL, …) characters 
00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p 

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q 

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r 

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s 

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t 

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u 

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v 

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w 

08 bs 18 can 28 ( 38 8 48 H 58 X 68 h 78 x 

09 ht 19 em 29 ) 39 9 49 I 59 Y 69 i 79 y 

0a lf 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z 

0b vt 1b esc 2b + 3b ; 4b K 5b [ 6b k 7b { 

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c | 

0d cr 1d gs 2d - 3d = 4d M 5d ] 6d m 7d } 

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~ 

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del 

New line: 

Unix: LF 

Windows: LF+CR  
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Interesting Properties of ASCII Code 

What is relationship between a decimal digit ('0', 

'1', …) and its ASCII code? 

What is the difference between an upper-case 

letter ('A', 'B', …) and its lower-case equivalent ('a', 

'b', …)? 

Given two ASCII characters, how do we tell which 

comes first in alphabetical order? 

Are 128 characters enough? 
(http://www.unicode.org/) 

No new operations -- integer arithmetic and logic. 
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Other Data Types 

Text strings 
 sequence of characters, terminated with NULL (0) 

 typically, no hardware support 

Image: several formats 
 array of pixels 

 monochrome: one bit (1/0 = black/white) 

 color: red, green, blue (RGB) components 

 other properties: transparency 

 hardware support: 

 typically none, in older general-purpose processors 

 MMX -- multiple 8-bit operations on 32-bit word 

Sound, video 
 Several file formats 
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LC-3 Data Types 

Some data types are supported directly by the 

instruction set architecture. 

For LC-3, there is only one hardware-supported 

data type: 

 16-bit 2’s complement signed integer 

 Operations: ADD, AND, NOT 

Other data types are supported by interpreting 

16-bit values as logical, text, fixed-point, etc., 

in the software that we write. 

It is a simple 

processor 


