
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Announcements

Welcome back.

Assignment 0 (introduce yourself) is due tonight.

Quiz 1 will be posted on RamCT soon. Due Sunday

night after a week.

HW1 will be posted RamCT later today. Will be due in a

week on Thursday.

Photo ID requirement for midterm and final.

CS270 - Spring 2013- Colorado State University 1

Chapter 2

Bits, Data Types,

and Operations

Original slides from Gregory Byrd, North Carolina State

University

Modified slides by Chris Wilcox, Yashwant Malaiya

Colorado State University

Everything is

1s and 0s

Leibniz 1703

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Spring 2013- Colorado State University

How do we represent data in a

computer?

At the lowest level, a computer is an electronic

machine.

 works by controlling the flow of electrons

Easy to recognize two conditions:

1. Higher voltage – we’ll call this state “1”

2. Lower voltage – we’ll call this state “0”

Control

 Turning transistors on or off

 Like a light switch to

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Spring 2013- Colorado State University

Computer is a binary digital system.

Basic unit of information is the binary digit, or bit.

Values with >2 states require multiple bits.
 A collection of two bits has four possible states:

00, 01, 10, 11

 A collection of three bits has eight possible states:

000, 001, 010, 011, 100, 101, 110, 111

 A collection of n bits has 2n possible states.

Binary (base two) system:

• has two states: 0 and 1

Digital system:

• finite number of symbols

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Spring 2013- Colorado State University

What kinds of data do we need to

represent?

 Numbers – signed, unsigned, integers, floating point,

complex, rational, irrational, …

 Text – characters, strings, …

 Instructions

 Logical – true, false

 Media

Images – pixels, colors, shapes, …

Sound – wave forms

Data type:
 representation and operations within the computer

We’ll start with numbers…

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Spring 2013- Colorado State University

Unsigned Integers

Binary numbers are just like decimal

 Except there are only two digits (0, 1) instead 10 (0, 1, 2, ..9)

Weighted positional notation

 like decimal numbers: “329”

 “3” is worth 300, because of its position, while “9” is only

worth 9

329

102 101 100

101

22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most

significant

least

significant bit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Spring 2013- Colorado State University

Unsigned Integers (cont.)

An n-bit unsigned integer represents 2n values:

from 0 to 2n-1.

22 21 20 Decimal

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Spring 2013- Colorado State University

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

 add from right to left, propagating carry

 10010 10010 1111

 + 1001 + 1011 + 1

 11011 11101 10000

 10111

 + 111

carry

Subtraction, multiplication, division,…

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Spring 2013- Colorado State University

Signed Integers

With n bits, we have 2n distinct values.
 assign about half to positive integers (1 through 2n-1)

 assign about half to negative (- 2n-1 through -1)

 that leaves two values: one for 0, and one extra

Positive integers
 just like unsigned – zero in most significant (MS) bit

00101 = 5

Negative integers
 sign-magnitude – set sign bit to show negative

10101 = -5

 one’s complement – flip every bit to represent negative

11010 = -5

 in either case, MS bit indicates sign: 0=pos., 1=neg.

Not

good

Not

good

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Spring 2013- Colorado State University

Two’s Complement

Problems with sign-magnitude, 1’s complement
 two representations of zero (+0 and –0)

 arithmetic circuits are complex

How to add two sign-magnitude numbers?
 e.g., try 2 + (-3)

How to add to one’s complement numbers?
 e.g., try 4 + (-3)

Solution: Two’s complement
Used

practically

universally

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Spring 2013- Colorado State University

Two’s Complement

Two’s complement representation developed to
make circuits easy for arithmetic.
 for each positive number (X), assign value to its

negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring
final carry out

 00101 (5) 01001 (9)

 + 11011 (-5) + (-9)

 00000 (0) 00000 (0)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Spring 2013- Colorado State University

Two’s Complement Representation

If number is positive or zero,

 normal binary representation, zeroes in upper bit(s)

If number is negative,

 start with positive number

 flip every bit (i.e., take the one’s complement)

 then add one

 00101 (5) 01001 (9)

 11010 (1’s comp) (1’s comp)

 + 1 + 1

 11011 (-5) (-9)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Spring 2013- Colorado State University

Two’s Complement Shortcut

To take the two’s complement of a number:

 copy bits from right to left until (and including) first “1”

 flip remaining bits to the left

 011010000 011010000

 100101111 (1’s comp)

 + 1

 100110000 100110000

(copy) (flip)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Spring 2013- Colorado State University

Two’s Complement Signed Integers

MS bit is sign bit – it has weight –2n-1.

Range of an n-bit number: -2n-1 through 2n-1 – 1.

 The most negative number has no positive counterpart.

-23 22 21 20

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

-23 22 21 20

1 0 0 0 -8

1 0 0 1 -7

1 0 1 0 -6

1 0 1 1 -5

1 1 0 0 -4

1 1 0 1 -3

1 1 1 0 -2

1 1 1 1 -1

smallest

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Spring 2013- Colorado State University

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s

complement to get a positive number.

2. Add powers of 2 that have “1” in the

corresponding bit positions.

3. If original number was negative,

add a minus sign.

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

 X = 01101000two

 = 26+25+23 = 64+32+8

 = 104ten

Assuming 8-bit 2’s complement numbers.

Remember

this

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Spring 2013- Colorado State University

More Examples

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Assuming 8-bit 2’s complement numbers.

 X = 00100111two

 = 25+22+21+20 = 32+4+2+1

 = 39ten

 X = 11100110two

 -X = 00011010

 = 24+23+21 = 16+8+2

 = 26ten

 X = -26ten

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Spring 2013- Colorado State University

Converting Decimal to Binary (2’s C)

First Method: Division

1. Find magnitude of decimal number

2. Divide by two – remainder is least significant bit.

3. Keep dividing by two until answer is zero,

writing remainders from right to left.

4. Append a zero as the MS bit;

for negative, take two’s complement.

 X = 104ten 104 div 2 = 52 r 0 bit 0

 52 div 2 = 26 r 0 bit 1

 26 div 2 = 13 r 0 bit 2

 13 div 2 = 6 r 1 bit 3

 6 div 2 = 3 r 0 bit 4

 3 div 2 = 1 r 1 bit 5

 1 div 2 = 0 r 1 bit 6

 X = 01101000two

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Spring 2013- Colorado State University

Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two

1. Find magnitude of decimal number.

2. Subtract largest power of two

less than or equal to number.

3. Put a one in the corresponding bit position.

4. Keep subtracting until result is zero.

5. Append a zero as MS bit;

if original was negative, take two’s complement.

 X = 104ten 104 - 64 = 40 bit 6

 40 - 32 = 8 bit 5

 8 - 8 = 0 bit 3

 X = 01101000two

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Spring 2013- Colorado State University

Operations: Arithmetic and Logical

Recall: data types include representation and
operations.

2’s complement is a good representation for signed
integers, now we need arithmetic operations:
 Addition (including overflow)

 Subtraction

 Sign Extension

Multiplication and division can be built from these
basic operations.

Logical operations are also useful:
 AND

 OR

 NOT

Will see

them soon

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Spring 2013- Colorado State University

Addition

As we’ve discussed, 2’s comp. addition is just

binary addition.

 assume all integers have the same number of bits

 ignore carry out

 for now, assume that sum fits in n-bit 2’s comp.

representation

 01101000 (104) 11110110 (-10)

 + 11110000 (-16) + (-9)

 01011000 (88) (-19)

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Spring 2013- Colorado State University

Subtraction

Negate subtrahend (2nd no.) and add.

 assume all integers have the same number of bits

 ignore carry out

 for now, assume that difference fits in n-bit 2’s comp.

representation

 01101000 (104) 11110110 (-10)

 - 00010000 (16) - (-9)

 01101000 (104) 11110110 (-10)

 + 11110000 (-16) + (9)

 01011000 (88) (-1)

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Spring 2013- Colorado State University

Sign Extension

To add two numbers, we must represent them

with the same number of bits.

If we just pad with zeroes on the left:

Instead, replicate the MS bit -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100 (still -4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Spring 2013- Colorado State University

Overflow

If operands are too big, then sum cannot be

represented as an n-bit 2’s comp number.

We have overflow if:

 signs of both operands are the same, and

 sign of sum is different.

Another test -- easy for hardware:

 carry into MS bit does not equal carry out

 01000 (8) 11000 (-8)

 + 01001 (9) + 10111 (-9)

 10001 (-15 ?) 01111 (+15)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Logic Operations

24 CS270 - Spring 2013- Colorado State University

George Boole (1815-1864) Claude Shannon (1916-2001)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Spring 2013- Colorado State University

Logical Operations

Operations on logical TRUE or FALSE

 two states -- takes one bit to represent: TRUE=1,

FALSE=0

View n-bit number as a collection of n logical values

 operation applied to each bit independently

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

A NOT A

0 1

1 0

Java/C: &&, ||, !

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Spring 2013- Colorado State University

Logical bitwise Operations

AND
 useful for clearing bits

AND with zero = 0

AND with one = no change

OR
 useful for setting bits

OR with zero = no change

OR with one = 1

NOT
 unary operation -- one argument

 flips every bit

 11000101

AND 00001111

 00000101

 11000101

 OR 00001111

 11001111

NOT 11000101

 00111010

Java/C: &, |, ~

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Spring 2013- Colorado State University

Hexadecimal Notation

It is often convenient to write binary (base-2)

numbers in hexadecimal (base-16) instead.

 fewer digits - four bits per hex digit

 less error prone - no long string of 1’s and 0’s

Binary Hex Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

Binary Hex Decimal

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Spring 2013- Colorado State University

Converting from Binary to Hexadecimal

Every four bits is a hex digit.

 start grouping from right-hand side
011 1010 1000 1111 0100 1101

0111

7 D 4 F 8 A 3

This is not a new machine representation,

just a convenient way to write the number.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS270 - Spring 2013- Colorado State University

Fractions: Fixed-Point

How can we represent fractions?

 Use a “binary point” to separate positive from

negative powers of two -- just like “decimal point.”

 2’s comp addition and subtraction still work (if binary

points are aligned)

 00101000.101 (40.625)

 + 11111110.110 (-1.25)

 00100111.011 (39.375)

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

No new operations -- same as integer arithmetic.

Only internal

use

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS270 - Spring 2013- Colorado State University

Floating-Point Numbers

Large values: 6.023 x 1023 -- requires 79 bits

Small values: 6.626 x 10-34 -- requires >110 bits

Use equivalent of “scientific notation”: F x 2E

Must have F (fraction), E (exponent), and sign.

IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(

126

127exponent

S

S

N

N

Single

precision

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS270 - Spring 2013- Colorado State University

Floating Point Example

Single-precision IEEE floating point number:

 1 01111110 10000000000000000000000

 Sign is 1 – number is negative.

 Exponent field is 01111110 = 126 (decimal).

 Fraction implies 1.100000000000… = 1.5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75

sign exponent fraction

Always 1 for normalized numbers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32 CS270 - Spring 2013- Colorado State University

Floating-Point Operations

Special cases: 0 (all zeros), infinity, etc.

Will regular 2’s complement arithmetic work for

Floating Point numbers?

(Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x

108?)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33 CS270 - Spring 2013- Colorado State University

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

 printable and non-printable (ESC, DEL, …) characters
00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w

08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x

09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y

0a lf 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z

0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |

0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

New line:

Unix: LF

Windows: LF+CR

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34 CS270 - Spring 2013- Colorado State University

Interesting Properties of ASCII Code

What is relationship between a decimal digit ('0',

'1', …) and its ASCII code?

What is the difference between an upper-case

letter ('A', 'B', …) and its lower-case equivalent ('a',

'b', …)?

Given two ASCII characters, how do we tell which

comes first in alphabetical order?

Are 128 characters enough?
(http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35 CS270 - Spring 2013- Colorado State University

Other Data Types

Text strings
 sequence of characters, terminated with NULL (0)

 typically, no hardware support

Image: several formats
 array of pixels

 monochrome: one bit (1/0 = black/white)

 color: red, green, blue (RGB) components

 other properties: transparency

 hardware support:

 typically none, in older general-purpose processors

 MMX -- multiple 8-bit operations on 32-bit word

Sound, video
 Several file formats

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36 CS270 - Spring 2013- Colorado State University

LC-3 Data Types

Some data types are supported directly by the

instruction set architecture.

For LC-3, there is only one hardware-supported

data type:

 16-bit 2’s complement signed integer

 Operations: ADD, AND, NOT

Other data types are supported by interpreting

16-bit values as logical, text, fixed-point, etc.,

in the software that we write.

It is a simple

processor

