Processor Performance &
Parallelism

Yashwant Malaiya
Colorado State University
With some PH stuff

Processor Execution time

Clock Cycles =Instruction Count x Cycles per Instruction
CPU Time =Instruction Count x CPIx Clock period

e The time taken by a program to execute is the product of
— Number of machine instructions executed
— Number of clock cycles per instruction (CPI)
— Single clock period duration

 Example: 10,000 instructions, CP1=2, clock period = 250 ps

CPU Time =10,000instructionsx 2 x 250 ps

—10%x2x250.10 12 =510 © sec.

Processor Execution time

CPU Time =Instruction Count x CPIx Clock Cycle Time

e Instruction Count for a program
— Determined by program, ISA and compiler

e Average Cycles per instruction (CPI)
— Determined by CPU hardware

— |If different instructions have different CPI
* Average CPI affected by instruction mix

e Clock cycle time (inverse of frequency)
— Logic levels
— technology

Reducing clock cycle time

Has worked well for decades. e

Small transistor dimensions
implied smaller delays and
hence lower clock cycle time.

MIPS/CPU clock speed

Not any more.

CPI (cycles per instruction)

What is LC-3 cycles per instruction?

Instructions take 5-9 cycles (p. 568), assuming
memory access time is one clock period

— LC-3 CPI may be about 6*. (ideal)

No cache, memory access time = 100 cycles?
— LC-3 CPI would be very high.

Cache reduces access time to 2 cycles.
— LC-3 CPI higher than 6, but still reasonable.

Parallelism to save time

* Do things in parallel to save time.
e Example: Pipelining
— Divide flow into stages.

— Let instructions flow into the pipeline.

— At a time multiple instructions are under
execution.

Pipelining Analogy
* Pipelined laundry: overlapping execution

— Parallelism improves performance

6 PM 7 8 9 10 11 12 1 2 AM

Time — -
. sl = Four loads:
i o= s time
; =4x2 = 8 hours
Time —_8PM Fé 8 9 1|0 1|1 1|2 1| QTM B PIpE|Iﬂ€dZ
Task - m = Time in example
~ B0=E = 7x0.5 = 3.5 hours
. @0
5 85 = Non-stop
: B0=f

=4x0.5 = 2 hours.

Chapter 4 — The Processor —
7

Pipeline Processor Performance
[single-cycle (T-800ps) |

Program
execution
order

(in instructions)

200 400 600 800 1000 1200 1400 1600 1800

Time

Instruction Data

lw $1, 100($0) fetch | e[ALU access | F€Y
Instructi Dat
lw $2, 200($0) 800 ps Mt || Reg| ALV | ol | Reg
Instruction
lw $3, 300($0) 800 ps fetch
Program
execution —. 200 400 600 800 1000 1200 1400
Tlme T T T T T T T

order
(in instructions)

Instructi Dat
w $1,100(30) | “fgien | |Re9| ALV | Locess P

) Instructi Data
lw $2, 200($0) 200 ps nsf;ltjghlon Reg| ALU access |Ne9
w $3, 300($0) 200 ps | "een| |Rea| AL | e |Reg

200 ps 200ps 200 ps 200ps 200 ps

Chapter 4 — The Processor —

8

Pipelining: Issues

e Cannot predict which branch will be taken.
— Actually you may be able to make a good guess.
— Some performance penalty for bad guesses.

e |nstructions may depend on results of
previous instructions.

— There may be a way to get around that problem in
some cases.

Instruction level parallelism (ILP):

e Pipelining is one example.
 Multiple issue: have multiple copies of resources

— Multiple instructions start at the same time

— Need careful scheduling
* Compiler assisted scheduling

* Hardware assisted (“superscaler”): “dynamic scheduling”
— Ex: AMD Opteron x4
— CPI can be less than 1!.

Flynn’s taxonomy
e MichaelJ. Flynn, 1966

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 Instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon e5345

m Instruction level parallelism is still SISD

m SSE (Streaming SIMD Extensions): vector operations
= Intel Xeon €5345: 4 cores

Multi what?

Multitasking: tasks share a processor
Multithreading: threads share a processor

Multiprocessors: using multiple processors

— For example multi-core processors (multiples
processors on the same chip)

— Scheduling of tasks/subtasks needed

Thread level parallelism:
— multiple threads on one/more processors

Simultaneous multi-threading:
— multiple threads in parallel (using multiple states)

Multi-core processors

Power consumption has
become a limiting factor

Key advantage: lower power

consumption for the same

performance

— Ex: 20% lower clock frequency:
87% performance, 51% power.

A processor can switch to lower

frequency to reduce power.

N cores: can run n or more
threads.

& Performance

Under-Clocking

Relative single-core frequency and Vcc

1.73x

11 B‘X 1.00x iy

Power

Over-clocked (+20%) Max Frequency Under-clocked (-20%)

Multi-core processors

Cores may be identical or specialized
Higher level caches are shared.
Lower level cache coherency required.

Cores may use superscalar or simultaneous
multi-threading architectures.

{See Figurs C.T)

BEN<=—IR[11]& N+ IR[0] & Z+ IR[S] & P
[IR[15:12]]

LDf a1

R7<-PC
[IR[t1]]

To 18

MDR<—M[MAR]
R7<-PC

10 1
(MAF!-:—PCrOﬁS} (MAF!A:-PCi-OﬁEa
* 24 ‘ 29

@BH:—M{MAHQ @DH:—WMAH@

R R R A el

To1d

DR<—PC+ofid
sat CC

MAR<—B+off

¥ ¥ 3| 3

26
(MAR<-MDR (MAR<-MDR) MAR<=PC+0ff9

To18 2
(MA Re=PC+0ff 9)

NOTES

B+offé : Base + SEXT[offsotb]
PC+offd : PC + SEXT{offsotd]

A o7 PC+off11 : PC + SEXT[odfseti 1]
DR<-MDR
set GG *0P2 may be 8R2 or SEXTimmb5]

To 18

LC-3
states

nstruction | Cyles
5

ADD, AND,
NOT, JMP

TRAP 8

LD, LDR, ST, 7
STR

LDI, STI 9
BR 5,6
JSR 6

