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Processor Execution time

Clock Cycles =Instruction Count x Cycles per Instruction
CPU Time =Instruction Count x CPIx Clock period

e The time taken by a program to execute is the product of
— Number of machine instructions executed
— Number of clock cycles per instruction (CPI)
— Single clock period duration

 Example: 10,000 instructions, CP1=2, clock period = 250 ps

CPU Time =10,000instructionsx 2 x 250 ps

—10%x2x250.10 12 =510 © sec.



Processor Execution time

CPU Time =Instruction Count x CPIx Clock Cycle Time

e Instruction Count for a program
— Determined by program, ISA and compiler

e Average Cycles per instruction (CPI)
— Determined by CPU hardware

— |If different instructions have different CPI
* Average CPI affected by instruction mix

e Clock cycle time (inverse of frequency)
— Logic levels
— technology



Reducing clock cycle time

Has worked well for decades. e

Small transistor dimensions
implied smaller delays and
hence lower clock cycle time.

MIPS/CPU clock speed

Not any more.



CPI (cycles per instruction)

What is LC-3 cycles per instruction?

Instructions take 5-9 cycles (p. 568), assuming
memory access time is one clock period

— LC-3 CPI may be about 6*. (ideal)

No cache, memory access time = 100 cycles?
— LC-3 CPI would be very high.

Cache reduces access time to 2 cycles.
— LC-3 CPI higher than 6, but still reasonable.




Parallelism to save time

* Do things in parallel to save time.
e Example: Pipelining
— Divide flow into stages.

— Let instructions flow into the pipeline.

— At a time multiple instructions are under
execution.



Pipelining Analogy
* Pipelined laundry: overlapping execution

— Parallelism improves performance
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Pipelining: Issues

e Cannot predict which branch will be taken.
— Actually you may be able to make a good guess.
— Some performance penalty for bad guesses.

e |nstructions may depend on results of
previous instructions.

— There may be a way to get around that problem in
some cases.



Instruction level parallelism (ILP):

e Pipelining is one example.
 Multiple issue: have multiple copies of resources

— Multiple instructions start at the same time

— Need careful scheduling
* Compiler assisted scheduling

* Hardware assisted (“superscaler”): “dynamic scheduling”
— Ex: AMD Opteron x4
— CPI can be less than 1!.




Flynn’s taxonomy
e MichaelJ. Flynn, 1966

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 Instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon e5345

m Instruction level parallelism is still SISD

m SSE (Streaming SIMD Extensions): vector operations
= Intel Xeon €5345: 4 cores



Multi what?

Multitasking: tasks share a processor
Multithreading: threads share a processor

Multiprocessors: using multiple processors

— For example multi-core processors (multiples
processors on the same chip)

— Scheduling of tasks/subtasks needed

Thread level parallelism:
— multiple threads on one/more processors

Simultaneous multi-threading:
— multiple threads in parallel (using multiple states)




Multi-core processors

Power consumption has
become a limiting factor

Key advantage: lower power

consumption for the same

performance

— Ex: 20% lower clock frequency:
87% performance, 51% power.

A processor can switch to lower

frequency to reduce power.

N cores: can run n or more
threads.

& Performance

Under-Clocking

Relative single-core frequency and Vcc

1.73x

11 B‘X 1.00x iy

Power

Over-clocked (+20%) Max Frequency Under-clocked (-20%)



Multi-core processors

Cores may be identical or specialized
Higher level caches are shared.
Lower level cache coherency required.

Cores may use superscalar or simultaneous
multi-threading architectures.
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ADD, AND,
NOT, JMP

TRAP 8

LD, LDR, ST, 7
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LDI, STI 9
BR 5,6
JSR 6



