

Fundamentals of Quantitative Design and Analysis
 Computer Architecture
 A Quantitative Approach, Hennessy, Patterson
 With other sources of information

"Exponential Growth"

- Grows by a factor of $(1+x)$ per year.
- By a factor of $(1+x)^{n}$ for n years.
- Example: An investment of \$1000
- 100% return in one year (i.e. doubles)
- When will it become a million dollars?
- Answer: $2^{y}=1000, \mathrm{y}=$?

Computer Technology

- Performance improvements:
- Improvements in semiconductor technology
- Feature size, clock speed
- Improvements in computer architectures
- Enabled by HLL compilers, UNIX
- Lead to RISC architectures
- Together have enabled:
- Lightweight computers
- Productivity-based managed/interpreted programming languages

Single Processor Performance

Move to multi-processor

\qquad

Defining Computer Architecture

- "Classical" view of computer architecture:
- Instruction Set Architecture (ISA) design
- i.e. decisions regarding:
- registers, memory addressing, addressing modes, instruction operands, available operations, control flow instructions, instruction encoding
- "New" computer architecture:
- Specific requirements of the target machine
- Design to maximize performance within constraints: cost, power, and availability
- Includes ISA, microarchitecture, hardware

Trends in Technology

－Integrated circuit technology
－Transistor density：35\％／year
－Die size：10－20\％／year
－Integration overall：40－55\％／year
－DRAM capacity：25－40\％／year（slowing）
－Flash capacity：50－60\％／year
－15－20X cheaper／bit than DRAM
－Magnetic disk technology：40\％／year
－15－25X cheaper／bit then Flash
－300－500X cheaper／bit than DRAM

Bandwidth and Latency

- Bandwidth or throughput
- Total work done in a given time
- 10,000-25,000X improvement for processors
- 300-1200X improvement for memory and disks
- Latency or response time
- Time between start and completion of an event
- 30-80X improvement for processors
- 6-8X improvement for memory and disks

The 3 technology laws

- Moore's Law: formulated by Gordon Moore of Intel in the early 70's - the number of transistors on a chip doubles every 18 months; corollary, computers become faster and the price of a given level of computing power halves every 18 months.
- Gilder's Law: proposed by George Gilder, prolific author and prophet of the new technology age - the total bandwidth of communication systems triples every twelve months. New developments seem to confirm that bandwidth availability will continue to expand at a rate that supports Gilder's Law.
- But no laws about Software (well ! Murphy's law)

Moore's law

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Program Size (lines of code)

Program Size (RAM)

Time to compile

Power

- Intel 80386 consumed ~ 2 W
- 3.3 GHz Intel Core i7 consumes 130 W
- Heat must be dissipated from

- This is the limit of what can be cooled by air

