

JOHN L. HENNESSY DAVID A. PATTERSON

Fundamentals of Quantitative Design and Analysis Computer Architecture A Quantitative Approach, Hennessy, Patterson With other sources of information

"Exponential Growth"

- Grows by a factor of (1+x) per year.
- By a factor of (1+x)ⁿ for n years.
- Example: An investment of \$1000
 - 100% return in one year (i.e. doubles)
 - When will it become a million dollars?
 - Answer: 2^y=1000, y = ?

Computer Technology

- Performance improvements:
 - Improvements in semiconductor technology
 - Feature size, clock speed
 - Improvements in computer architectures
 - Enabled by HLL compilers, UNIX
 - Lead to RISC architectures
 - Together have enabled:
 - Lightweight computers
 - Productivity-based managed/interpreted programming languages

Single Processor Performance

Move to multi-processor

Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

Defining Computer Architecture

- "Classical" view of computer architecture:
 - Instruction Set Architecture (ISA) design
 - i.e. decisions regarding:
 - registers, memory addressing, addressing modes, instruction operands, available operations, control flow instructions, instruction encoding
- "New" computer architecture:
 - Specific requirements of the target machine
 - Design to maximize performance within constraints: cost, power, and availability
 - Includes ISA, microarchitecture, hardware

Trends in Technology

- Integrated circuit technology
 - Transistor density: 35%/year
 - Die size: 10-20%/year
 - Integration overall: 40-55%/year
- DRAM capacity: 25-40%/year (slowing)
- Flash capacity: 50-60%/year
 - 15-20X cheaper/bit than DRAM
- Magnetic disk technology: 40%/year
 - 15-25X cheaper/bit then Flash
 - 300-500X cheaper/bit than DRAM

Bandwidth and Latency

- Bandwidth or throughput
 - Total work done in a given time
 - 10,000-25,000X improvement for processors
 - 300-1200X improvement for memory and disks
- Latency or response time
 - Time between start and completion of an event
 - 30-80X improvement for processors
 - 6-8X improvement for memory and disks

The 3 technology laws

- Moore's Law: formulated by Gordon Moore of Intel in the early 70's the number of transistors on a chip doubles every 18 months; corollary, computers become faster and the price of a given level of computing power halves every 18 months.
- Gilder's Law: proposed by George Gilder, prolific author and prophet of the new technology age - the total bandwidth of communication systems triples every twelve months. New developments seem to confirm that bandwidth availability will continue to expand at a rate that supports Gilder's Law.
- But no laws about Software (well ! Murphy's law)

Moore's law

Program Size (lines of code)

Program Size (RAM)

Time to compile

Power

- Intel 80386
 consumed ~ 2 W
- 3.3 GHz Intel Core i7 consumes 100 130 W
- Heat must be dissipated from 1.5 x 1.5 cm chip
- This is the limit of what can be cooled by air

Trends in Power and Energy