Chapter 15
Debugging

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging with High Level Languages

@ Same goals as low-level debugging
= Examine and set values in memory
= EXecute portions of program
= Stop execution when (and where) desired

@ Want debugging tools to operate on
high-level language constructs
= Examine and set variables, not memory locations

= Trace and set breakpoints on statements and function
calls, not instructions

= ...but also want access to low-level tools when
needed

CS270 - Spring 2013 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Types of Errors

@ Syntactic Errors

= Input code is not legal

= Caught by compiler (or other translation mechanism)
@ Semantic Errors

= Legal code, but not what programmer intended

= Not caught by compiler, because syntax is correct
@ Algorithmic Errors

= Problem with the logic of the program

=« Program does what programmer intended,
but it doesn't solve the right problem

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Syntactic Errors

@ Common errors:
= Missing semicolon or brace
= Mmis-spelled type in declaration

@ One mistake can cause an avalanche of errors
= because compiler can't recover and gets confused

main () {

missing semicolon

Nt | <
Int j;
for (i =0; i <= 10; i++) {

] =1 * 7;

printf("% x 7 = %l\n", i, j),;
}

} CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Semantic Errors

@ Common Errors
= Missing braces to group statements together

=« Confusing assignment with equality
= Wrong assumptions about precedence/associativity

= Wrong limits on for-loop counter
= Uninitialized variables

missing braces,

mal ”i r(1t) |{ so printf not part of if
Int j;
for (1 = 0; | 10; |1 ++)
j =1 * 7;
printf("% x 7 = %l\n", i, j),;
}

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Algorithmic Errors

@ Design is wrong, so program does not solve the
correct problem

@ Difficult to find

=« Program does what we intended
= Problem might not show up until after many runs

@ Maybe difficult to fix
= May have to redesign
=« May have large impact on program code

@ Classic example: Y2K bug
= only allow 2 digits for year, assuming 19

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Y2K BUG

WEEKLY WORLD

3159 US 3130 CANADA 399 L K

MICHAEL S. HYATT

Authoe of the Xew Jork Times Bestsoller

The Millennium Bug ‘ ‘

E
Yons hnoe the V2K fmat ‘ \
Survival

ol v s v
Evervthing

Ty e AT | o 8 e

wd vow beab twe 1'% > - e
& b e s by ey 2 oy s)”-'s.-\\ A

Pepacanms Ol _:;- ol TR

a e - i A .
e T T T ' l -
Mus:

8 Hhonbeds of smasies
for fretong e creygEny N
wqgd o sen wal '

& akm gy p— M ‘
whebor #a criie buats 3 0
For 7] barwen W) domn,

1=}
you necd [iilideasiabe = _ ,
to L‘"”“‘ Pars's all tiws, ot yon. 5
o “Ilvl ravd ot dwvn] mee s 38
Pk gusrain the we s i) & g ‘

from this side of the Rl : ' o
:*9 N e LA] ﬁ
crisis to the other S y 1 d
et b

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging Techniques

@ Ad-Hoc

= Insert printf statements to track control flow and
display values

= Add code to explicitly check for values out of
expected range, incorrect branches, etc.

« Advantage:

* No special debugging tools needed
= Disadvantages:

* Frequent recompile and execute cycles makes this
method time-consuming

* Requires intimate knowledge of code
* Inserted code can be buggy

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source-Level Debugger
loj

File. Fum Wiew Conbral Preferences Help

%?}ﬁ*{?*{}\ﬁ}‘@\ﬁﬁﬁé&ﬂ%h exag10a0] 14 = & =

1 #include <stdio.h> =
2
3 int AllSum{int n}; . .
M main window
L int main{)} .
= 6 of Cygwin
& 7 int in; F* Input value =/ -
8 int sum; F* Ualue of 1+2+3+_ . _+n =/ version Of gdb
g
18 do {
= 11 printf{"Input a number: ");
- 12 scanf("%d", &in);

13
= ﬁ1 k - if (in > 8) ¢

sum = AllSum{in);

- 16 printf{"The A1l3um of %d is %din", in, sum);
17 1
= 18 Y ywhile {in » 8);
= 19 3}
28
21 int AllSum{int n)}
= 22 {
- 23 int H; /* Iteration count =/ I
24 int result; f* Result to be returned =/
25
- 26 for {i=1; i<=n; i++) /* This loop calculates sum */
= 27 result = result + i; ;ﬂ

IF'ru:ugram stopped at line 14

[p11sum.c »| |main »| |SOURCE ~]| I

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source-Level Debugging Techniques

Q@ Breakpoints
=« Stop when a particular statement is reached
= Stop at entry or exit of a function

= Conditional breakpoints: .
Stop If a variable is equal to a specific value, etc.

= Watchpoints: | B
Stop when a variable is set to a specific value

Q@ Single-Stepping
= Execute one statement at a time
« Step "into" or step "over" function calls
« Step into: next statement is first inside function call
« Step over: execute function without stopping
« Step out: finish executing function, stop on exit

CS270 - Spring 2013 - Colorado State University

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source-Level Debugging Techniques

@ Displaying Values
= Show value consistent with declared type of variable
= Dereference pointers (variables that hold addresses)
« See Chapter 16
= Inspect parts of a data structure
* See Chapters 19

CS270 - Spring 2013 - Colorado State University

11

