
Perspective

Memory Model for

Program Execution

Slides by C. Wilcox, Y. Malaiya

 Colorado State University

CS270 - Spring 2013 - Colorado State

University

2 CS270 - Fall 2012 - Colorado State University

Problem

How do we allocate memory during the execution of

a program written in C?

Programs need memory for code and data such as

instructions, global and local variables, etc.

Need support for a function calling another function,

recursion

Some memory must be allocated dynamically, size

and type is unknown at compile time.

CS270 - Spring 2013 - Colorado State University

Instructions are stored in code segment

Global data is stored in data segment

Statically allocated memory (locals) uses stack

Dynamically allocated memory uses heap

3 CS270 - Fall 2012 - Colorado State University

Real Solution: Execution Stack

Code

Data

Heap

↓

↑

Stack

 Code segment is write protected

 Initialized and uninitialized globals

 Heap can be fragmented

 Stack size is usually limited

 Stack can grow (usual convention is

toward smaller addresses)

x0000

xFFFF

CS270 - Spring 2013 - Colorado State University

4 CS270 - Fall 2012 - Colorado State University

Execution Stack

Picture of stack during

program execution, same

call stack as previous slide:

 main() calls A(5,6)

 A(5,6) calls B(6,7)

 B(6,7) calls C(7,8)

 C(7,8) calls D(8,9)

D(8,9)

C(7,8)

B(6,7)

A(5,6)

main()

x0000

xFFFF

CS270 - Spring 2013 - Colorado State University

5 CS270 - Fall 2012 - Colorado State University

Stack Requirements
Consider what has to happen in a function call:

 Caller must pass parameters to the callee.

 Caller must transfer control to the callee.

 Callee must allocate space for the return value.

 Callee must save the return address to caller.

 Callee requires space for local variables.

 Callee must return control to the caller.

 Caller must pop the return value and params.

Parameters, return value, return address, and

locals are stored on the stack.

The order above determines the responsibility and

order of stack operations.

CS270 - Spring 2013 - Colorado State University

Execution Stack

6 CS270 - Fall 2012 - Colorado State University

Definition: A stack frame or activation record is the

memory required for a function call:

 Stack frame below contains the

function that called this function.

 Stack frame above contains the

functions called from this function.

 Caller pushes parameters, calls callee,

pops return value and params.

 Callee allocates return value, pushes

the return address, allocates and frees

local variables, and stores the return

value.

↑

Locals

Return Address

Return Value

Parameters

↓

x0000

xFFFF

CS270 - Spring 2013 - Colorado State University

7 CS270 - Fall 2012 - Colorado State University

Stack Pointers

Clearly we need a variable to store the stack

pointer (SP), LC3 assembly uses R6.

Stack execution is ubiquitous, so hardware has

a stack pointer, sometimes even instructions.

Problem: stack pointer is difficult to use to

access data, since it moves around constantly.

Solution: allocate another variable called a

frame pointer (FP), for stack frame, uses R5.

Where should frame pointer point? Convention

sets it at some constant offset relative to locals.

CS270 - Spring 2013 - Colorado State University

8

What about Disk & Cache

Disk (secondary memory)

 LC-3 simplification: main memory holds everything

 Actual systems (virtual memory):

 Some of the stuff is on disk

 OS manages things so that a process sees a flat

virtual address space

 Main memory appears larger than it actually is.

Cache:

 Hardware manages things so that main memory

appears faster than it actually is.

CS270 - Spring 2013 - Colorado State University

