

Chapter 5 The LC-3

Original slides from Gregory Byrd, North Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya Colorado State University

Computing Layers

CS270 - Spring 2013 - Colorado State University

Instruction Set Architecture

ISA = All of the programmer-visible components and operations of the computer

- memory organization
 - address space -- how may locations can be addressed?
 - addressibility -- how many bits per location?
- register set
 - how many? what size? how are they used?
- instruction set
 - opcodes
 - data types
 - addressing modes
- ISA provides all information needed for someone that wants to write a program in machine language
 - or translate from a high-level language to machine language.

LC-3 Overview: Memory and Registers Memory

- address space: 2¹⁶ locations (16-bit addresses)
- addressability: 16 bits

Registers

- temporary storage, accessed in a single machine cycle
 accessing memory takes longer than a single cycle
- eight general-purpose registers: R0 R7
 - each 16 bits wide
 - how many bits to uniquely identify a register?
- other registers
 - not directly addressable, but used by (and affected by) instructions
 - PC (program counter), condition codes

LC-3 Overview: Instruction Set

Opcodes

- 15 opcodes, 3 types of instructions
- Operate: ADD, AND, NOT
- Data movement: LD, LDI, LDR, LEA, ST, STR, STI
- Control: BR, JSR/JSRR, JMP, RTI, TRAP
- some opcodes set/clear condition codes, based on result:

• N = negative, Z = zero, P = positive (> 0)

Data Types

16-bit 2's complement integer

Addressing Modes

- How is the location of an operand specified?
- non-memory addresses: immediate, register
- memory addresses: PC-relative, indirect, base+offset

Operate Instructions

Only three operations: ADD, AND, NOT

- Source and destination operands are registers
 - These instructions <u>do not</u> reference memory.
 - ADD and AND can use "immediate" mode, where one operand is hard-wired into the instruction.
- Will show dataflow diagram with each instruction.
 - illustrates <u>when</u> and <u>where</u> data moves to accomplish the desired operation

CS270 - Spring 2013 - Colorado State University

Using Operate Instructions

• With only ADD, AND, NOT...

- How do we shift left?
- How do we subtract? Hint: Negate and add
- How do we OR?
 Hint: Demorgan's law
- How do we copy from one register to another?
- How do we initialize a register to zero?
- How do we set a particular bit in a zero vector?

Data Movement Instructions

- Load -- read data from memory to register
 - LD: PC-relative mode
 - LDR: base+offset mode
 - LDI: indirect mode
- Store -- write data from register to memory
 - ST: PC-relative mode
 - STR: base+offset mode
 - STI: indirect mode
- Load effective address -- compute address, save in register
 - LEA: immediate mode
 - does not access memory

PC-Relative Addressing Mode

Want to specify address directly in the instruction

- But an address is 16 bits, and so is an instruction!
- After subtracting 4 bits for opcode and 3 bits for register, we have <u>9 bits</u> available for address.
- Solution:
 - Use the 9 bits as a <u>signed offset</u> from the current PC.
- 9 bits: $-256 \le \text{offset} \le +255$
- Can form address such that: $PC 256 \le X \le PC + 255$
 - Remember that PC is incremented as part of the FETCH phase;
 - This is done <u>before</u> the EVALUATE ADDRESS stage.

Load Effective Address

 Computes address like PC-relative (PC plus signed offset) and stores the result into a register.

Note: The <u>address</u> is stored in the register, not the contents of the memory location.

We can use the destination register as a pointer

Indirect Addressing Mode

- With PC-relative mode, can only address data within 256 words of the instruction.
 - What about the rest of memory?
- Solution #1:

- Using a location as a pointer
- Read address from memory location, then load/store to that address.
- Initial address is generated from PC and IR (just like PC-relative addressing), then content of that address is used as target for load/store.

Base + Offset Addressing Mode

- With PC-relative mode, can only address data within 256 words of the instruction.
 - What about the rest of memory?
- Solution #2:
 - Use a register to generate a full 16-bit address.
- 4 bits for opcode, 3 for src/dest register,
 3 bits for base register -- remaining 6 bits are used as a <u>signed offset</u>.
 - Offset is sign-extended before adding to base register.

Example

Address	Instruction	Comments
x30F6	1 1 1 0 0 0 1 1 1 1 1 1 1 0 1	$R1 \leftarrow PC - 3 = x30F4$
x30F7	0 0 1 0 1 0 0 1 1 0 1 1 0	$R2 \leftarrow R1 + 14 = x3102$
x30F8	0 0 1 1 0 1 0 1 1 1 1 1 0 1 1	M[PC - 5] ← R2 M[x30F4] ← x3102
x30F9	0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R 2 ← 0
x30FA	0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	$R2 \leftarrow R2 + 5 = 5$
x30FB	0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0	M[R1+14] ← R2 M[x3102] ← 5
x30FC	1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 opcode	R3 ← M[M[x30F4]] R3 ← M[x3102] R3 ← 5

Example

Address	Instruction	Comments
x30F6	1 1 1 0 0 0 1 1 1 1 1 1 1 0 1	LEA R1, Lab2
x30F7	0 0 1 0 1 0 0 1 1 0 1 1 0	ADD R2, R1, #14
x30F8	0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1	ST R2, Lab2
x30F9	0 1 0 1 0 1 0 1 0 1 0 0 0 0	AND R2, R2, #0
x30FA	0 0 1 0 1 0 1 0 1 0 0 1 0 1	ADD R2, R2, #5
x30FB	0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0	LDR R2, R1, #14
x30FC	1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 opcode	LDI R2, Lab2

LC3 Addressing Modes: Comparison

Instruction	Example	Destination	Source
NOT	NOT R2, R1	R2	R1
ADD / AND (imm)	ADD R3, R2, #7	R3	R2, #7
ADD /AND	ADD R3, R2, R1	R3	R2, R1

LD	LD R4, LABEL	R4	M[LABEL]
ST	ST R4, LABEL	M[LABEL]	R4
LDI	LDI R4, HERE	R4	M[M[HERE]]
STI	STI R4, HERE	M[M[HERE]]	R4
LDR	LDR R4, R2, #–5	R4	M[R2 – 5]
STR	STR R4, R2, #5	M[R2 + 5]	R4
LEA	LEA R4, TARGET	R4	address of TARGET

Control Instructions

 Used to alter the sequence of instructions (by changing the Program Counter)

Conditional Branch

- branch is taken if a specified condition is true
 - signed offset is added to PC to yield new PC
- else, the branch is not taken
 - PC is not changed, points to the next instruction

Unconditional Branch (or Jump)

always changes the PC

• TRAP

- changes PC to the address of an OS "service routine"
- routine will return control to the next instruction (after the TRAP)

Condition Codes

• LC-3 has three condition code registers:

- N -- negative
- Z -- zero
- P -- positive (greater than zero)
- Set by any instruction that writes a value to a register
 (ADD, AND, NOT, LD, LDR, LDI, LEA)
- Exactly <u>one</u> will be set at all times
 - Based on the last instruction that altered a register

Branch Instruction

Branch specifies one or more condition codes.
If a set bit is specified, the branch is taken.

- PC-relative addressing: target address is made by adding signed offset (IR[8:0]) to current PC.
- Note: PC has already been incremented by FETCH stage.
- Note: Target must be within 256 words of BR instruction.
- If the branch is not taken, the next sequential instruction is executed.

What happens if bits [11:9] are all zero? All one?

CS270 - Spring 2013 - Colorado State University

Using Branch Instructions

Compute sum of 12 integers.

Numbers start at location x3100. Program starts at location x3000.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sample Program

JMP (Register) Assembly Ex: JMP R3

Jump is an unconditional branch -- <u>always</u> taken.

- Target address is the contents of a register.
- Allows any target address.

13 12 11 10 9 5 7 6 4 3 2 0 JMP 0 0 0 0 0 0 0 00 0 Base | 0

Calls a service routine, identified by 8-bit "trap

vector."

vector	routine
x23	input a character from the keyboard
x21	output a character to the monitor
x25	halt the program

When routine is done, PC is set to the instruction following TRAP.

We'll talk about how this works later.

Another Example

Count the occurrences of a character in a file

- Program begins at location x3000
- Read character from keyboard
- Load each character from a "file"
 - File is a sequence of memory locations
 - Starting address of file is stored in the memory location immediately after the program
- If file character equals input character, increment counter
- End of file is indicated by an ASCII value: EOT (x04)
- At the end, print the number of characters and halt (assume there will be less than 10 occurrences of the character)
- A special character used to indicate the end of a sequence is often called a sentinel.
 - Useful when you don't know ahead of time how many times to execute a loop.

CS270 - Spring 2013 - Colorado State University


```
.ORIG x3000
                                                       ; Get next character from the file
                       ; R2 is counter, initialize to 0
    AND
           R2,R2,#0
          R3,PTR
                      ; R3 is pointer to characters
    LD
                                                       GETCHAR ADD R3,R3,#1 ; Increment the pointer
    TRAP x23
                     ; R0 gets character input
                                                           LDR R1,R3,#0 ; R1 gets the next character to
    LDR
          R1.R3.#0
                      ; R1 gets the next character
                                                       test
                                                            BRnzp TEST
: Test character for end of file
                                                       ; Output the count.
TEST ADD R4,R1,#-4 ; Test for EOT
                                                       OUTPUT LD
                                                                      R0,ASCII ; Load the ASCII template
    BRz OUTPUT
                       ; If done, prepare the output
                                                           ADD R0,R0,R2 ; Convert binary to ASCII
                                                           TRAP x21
                                                                             ; ASCII code in R0 is displayed
; Test character for match. If a match, increment count.
                                                           TRAP x25
                                                                             ; Halt machine
    NOT
           R1.R1
                                                       ; Storage for pointer and ASCII template
           R1.R1.R0
    ADD
                       ; If match, R1 = xFFFF
    NOT
           R1.R1
                      ; If match, R1 = x0000
                                                       ASCII .FILL x0030
           GETCHAR
                         ; no match, do not increment
    BRnp
                                                       PTR .FILL x3015
           R2,R2,#1
    ADD
                                                            .END
,
```

Program (1 of 2)

Address					Instruction											Comments	
x3000	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	$R2 \leftarrow 0$ (counter)
x3001	0	0	1	0	0	1	1	0	0	0	Ō	1	0	0	0	0	R3 ← M[x3102] (ptr)
x3002	1	1	1	1	0	0	0	0	0	0	1	0	0	0	1	1	Input to R0 (TRAP x23)
x3003	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	R1 ← M[R3]
x3004	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	0	$R4 \leftarrow R1 - 4$ (EOT)
x3005	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	If Z, goto x300E
x3006	1	0	0	1	0	0	1	0	0	1	1	1	1	1	1	1	$R1 \leftarrow NOT R1$
x3007	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	<i>R</i> 1 ← <i>R</i> 1 + 1
X3008	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	<i>R1</i> ← <i>R</i> 1 + <i>R</i> 0
x3009	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	If N or P, goto x300B

CS270 - Spring 2013 - Colorado State University

Program (2 of 2)

Address	Instruction	Comments								
x300A	0 0 0 1 0 1 0 1 0 1 0 0 0 1	<i>R</i> 2 ← <i>R</i> 2 + 1								
x300B	0 0 0 1 0 1 1 0 1 1 0 0 0 1	R3 ← R3 + 1								
x300C	0 1 1 0 0 0 1 0 1 1 0 0 0 0 0	R1 ← M[R3]								
x300D	0 0 0 0 1 1 1 1 1 1 1 0 1 1 0	Goto x3004								
x300E	0 0 1 0 0 0 0 0 0 0 0 0 1 0 0	R0 ← M[x3013]								
x300F	0 0 1 0 0 0 0 0 0 0 0 0 0 1 0	<i>R0 ← R0</i> + <i>R</i> 2								
x3010	1 1 1 1 0 0 0 0 0 0 1 0 0 0 1	Print R0 (TRAP x21)								
x3011	1 1 1 1 0 0 0 0 <u>0 0 1 0 0 1 0 1</u>	HALT (TRAP x25)								
X3012	12 Starting Address of File									
x3013	0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0	ASCII x30 ('0')								

CS270 - Spring 2013 - Colorado State University

Filled arrow

Unfilled arrow

= control signal.

Global bus

- special set of wires that carry a 16-bit signal to many components
- inputs to the bus are "tri-state devices", that only place a signal on the bus when they are enabled
- only one (16-bit) signal should be enabled at any time
 - control unit decides which signal "drives" the bus
- any number of components can read the bus
 - register only captures bus data if it is write-enabled by the control unit

Memory

- Control and data registers for memory and I/O devices
- memory: MAR, MDR (also control signal for read/write)

Filled arrow

= info to be processed. Unfilled arrow

= control signal.

ALU

- Accepts inputs from register file and from sign-extended bits from IR (immediate field).
- Output goes to bus.
 - used by condition code logic, register file, memory

Register File

- Two read addresses (SR1, SR2), one write address (DR)
- Input from bus
 - result of ALU operation or memory read
- Two 16-bit outputs
 - used by ALU, PC, memory address
 - data for store instructions passes through ALU

Filled arrow

Unfilled arrow

= control signal.

CS270 - Spring 2013 - Colorado State University

PC and PCMUX

- Three inputs to PC, controlled by PCMUX
 - 1.PC+1 FETCH stage
 - 2.Address adder BR, JMP
 - 3.bus TRAP (discussed later)
- MAR and MARMUX
 - Two inputs to MAR, controlled by MARMUX
 1.Address adder LD/ST, LDR/STR
 2.Zero-extended IR[7:0] -- TRAP (discussed later)

CS270 - Spring 2013 - Colorado State University

Filled arrow

Unfilled arrow

= control signal.

Condition Code Logic

- Looks at value on bus and generates N, Z, P signals
- Registers set only when control unit enables them (LD.CC)
 - only certain instructions set the codes (ADD, AND, NOT, LD, LDI, LDR, LEA)
- Control Unit Finite State Machine
 - On each machine cycle, changes control signals for next phase of instruction processing
 - who drives the bus? (GatePC, GateALU, ...)
 - which registers are write enabled? (LD.IR, LD.REG, ...)
 - which operation should ALU perform? (ALUK)
 - Logic includes decoder for opcode, etc.