
CS270 Recitation 11
“C Pointer Exercise”

Goals

To improve your understanding of C pointers, including arrays and strings, via a practice session.

The Assignment

Make a subdirectory called R11 for the recitation assignment, all files should reside in this subdirecto-
ry. Download the pointers.c source file and associated Makefile as a starting point for the exercise. 
Make sure the program compiles and runs in the R11 directory:

$ make
$ ./r11

Exercise 1: Pointer Basics

The exercise1() function has the code for the first exercise. The function 1) declares several different 
types of variables, 2) initializes the variables, 3) declares a pointer for each variable, and 4) initializes 
the pointer to point at the variable. The values and address of each variable are printed.

STEP 1: Add code that prints out the pointer and the address of the variable (using the & symbol), and 
verify that they are the same.

STEP 2: Add code that changes the value of the variable via the pointer (using the * symbol), then print 
out the pointers and values again to test your code.

Conclusions: 

• The address of a variable and a pointer to the variable are identical.
• Pointers can be used to change the value of variables.

Exercise 2: Pointer Arguments

The exercise2() function has the code for the second exercise. The code defines two subfunctions called 
passByValue() and passByReference(), which pass their arguments by value and references.

STEP 1: Add code to call the passByValue() function with the local variables. Check the values printed 
out to make sure that they don’t change after the call.

STEP 2: Add code to call the passByReference() function with the local variables. Check the values 
printed out to make sure that they do change after the call.

Conclusions: 

• Arguments can be values or pointers.
• The value of a variable can be changed by a function only when passed by reference.

Exercise 3: Arrays and Pointers

http://www.cs.colostate.edu/~cs270/.Spring12/Recitations/R11/pointers.c
http://www.cs.colostate.edu/~cs270/.Spring12/Recitations/R11/Makefile


The exercise3() function has the code for the third exercise. The function declares a static array, then it 
allocates dynamic memory for another array, and both are initialized.

STEP 1: Add code to print out the static array, using pointer access instead of array subscripts, e.g. use 
*(intArray+0) to access the first element, *(intArray+1) to access the second element, etc.

STEP 2: Add code to print out the dynamic array, using array subscripts instead of pointer access, e.g. 
use intPointer[0] to access the first element, intPointer[1] to access the second element, etc.

Question: Why is it intArray+1 instead of intArray+4, isn’t an integer four bytes?
Answer: Pointer math accounts for size of objects being pointed at.

Conclusions: 

• Arrays can be allocated statically or dynamically.
• Arrays and pointers are virtually interchangeable in C.

Exercise 4: String and Pointers

The exercise4() function has the code for the fourth exercise. The code defines three strings by using 
three methods: an initializer, static allocation, and dynamic allocation.

STEP 1: Add code to print out these strings using %s and the name

STEP 2: Add code to print out the seventh character using %c and array access, e.g. string1[6].

Conclusions: 

• You can allocate strings different ways, but they’re all the same.
• Character pointers and arrays of characters are identical, they’re both strings.

Exercise 5: Static Versus Dynamic

The exercise5() function has the code for the fifth exercise. The code allocates dynamic and static ar-
rays of several data types.

STEP 1: Add code to print out the pointers to the static and dynamic arrays, no special syntax is re-
quired, just use the array or pointer name, since both are just pointers! The allocations should have very 
different addresses.

Conclusions: 

• Memory can be allocated dynamically or statically in C.
• Local static allocations are on the stack, dynamic allocations are on heap.


