

How do we represent data in a computer?

- At the lowest level, a computer is an electronic machine.
- works by controlling the flow of electrons
- Easy to recognize two conditions:

1. presence of a voltage - we' Il call this state " 1 "
2. absence of a voltage - we'll call this state " 0 "

- Could base state on value of voltage, but control and detection circuits more complex.
- compare turning on a light switch to measuring or regulating voltage

Computer is a binary digital system.

Digital system:

- finite number of symbols

Binary (base two) system:

- has two states: 0 and 1

- Basic unit of information is the binary digit, or bit. - Values with >2 states require multiple bits.
- A collection of two bits has four possible states: 00, 01, 10, 11
- A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has 2^{n} possible states.

What kinds of data do we need to represent?

- Numbers - signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Text - characters, strings, ...
- Logical - true, false
- Images - pixels, colors, shapes, ...
- Sound - wave forms
- Instructions
- ...

Data type:

- representation and operations within the computer - We' ll start with numbers...

Unsigned Integers

- Non-positional notation
- could represent a number (" 5 ") with a string of ones ("11111")
- problems?
- Weighted positional notation
- like decimal numbers: "329"
- " 3 " is worth 300 , because of its position, while " 9 " is only worth 9

Unsigned Integers (cont.)

- An n-bit unsigned integer represents 2^{n} values: from 0 to 2^{n-1}.

2^{2}	2^{1}	2^{0}	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Unsigned Binary Arithmetic

- Base-2 addition - just like base-10!
- add from right to left, propagating carry

10010
$+\quad 1001$
11011

$\cap^{\text {carry }}$
10010

$+\quad$| 1011 |
| ---: |
| 11101 |$+\frac{1}{10000}$

10111

$+\quad 111$

Subtraction, multiplication, division,...

Administriva

- Sanjay Office hours (this week only):
- Thursday 1-5
- Friday 10-11:30
- Friday 2-5
- I may step out for a coffee break, or may be discussing with other students/faculty. CS270 students can interrupt at any time (just this week)
- No office hours next week (plan early for HW1)

Polynomial Number Representation

- Look up the posted notes

Signed Integers

- With n bits, we have 2^{n} distinct values.
- assign about half to positive integers (1 through 2^{n-1})
- assign about half to negative (-2^{n-1} through -1)
- that leaves two values: one for 0 , and one extra
- Positive integers
- just like unsigned - zero in most significant (MS) bit $00101=5$
- Negative integers
- sign-magnitude - set sign bit to show negative $10101=-5$
- one's complement - flip every bit to represent negative $11010=-5$
- in either case, MS bit indicates sign: 0=pos., 1=neg.

Two' s Complement

- Problems with sign-magnitude, 1's complement
- two representations of zero (+0 and -0)
- arithmetic circuits are complex
-How to add two sign-magnitude numbers?
- e.g., try $2+(-3)$
-How to add to one' s complement numbers?
- e.g., try 4 + (-3)

Problems with SM \& 1' s comp (cont' d)

Bit pattern	Unsigned	SM	$1 \prime$ s Compl	Solution(?)
000	0	0	0	0
001	1	+1	+1	+1
010	2	+2	+2	+2
011	3	+3	+3	+3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	-1

Two' s Complement

- Two's complement representation developed to make circuits easy for arithmetic.
- for each positive number (X), assign value to its negative (-X), such that $\mathrm{X}+(-\mathrm{X})=0$ with "normal" addition, ignoring carry out

Two's Complement Representation

- If number is positive or zero,
- normal binary representation, zeroes in upper bit(s)
- If number is negative,
- start with positive number
- flip every bit (i.e., take the one' s complement)
- then add one

Two's Complement Shortcut

- To take the two' s complement of a number:
- copy bits from right to left until (and including) first "1"
- flip remaining bits to the left

011010000
 100101111
 $+\quad 1$
 100110000

011010000

Two’ s Complement Signed Integers

- MS bit is sign bit: it has weight -2^{n-1}.
- Range of an n-bit number: -2^{n-1} through $2^{n-1}-1$.
- The most negative number has no positive counterpart.

-2^{3}	2^{2}	2^{1}	2^{0}		-2^{3}	$2{ }^{2}$	2^{1}	2^{0}	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Converting Binary (2's C) to Decimal

1. If leading bit is one, take two's complement to get a positive number.
2. Add powers of 2 that have " 1 " in the corresponding bit positions.
3. If original number was negative, add a minus sign.

$$
\begin{aligned}
X & =01101000_{\text {two }} \\
& =2^{6}+2^{5}+2^{3}=64+32+8 \\
& =104_{\text {ten }}
\end{aligned}
$$

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Assuming 8-bit 2's complement numbers.

More Examples

$$
\begin{aligned}
X & =00100111_{\text {two }} \\
& =2^{5}+2^{2}+2^{1}+2^{0}=32+4+2+1 \\
& =39_{\text {ten }} \\
& \\
X & =11100110_{\text {two }} \\
-X & =00011010 \\
& =2^{4}+2^{3}+2^{1}=16+8+2 \\
& =26_{\text {ten }} \\
X & =-26_{\text {ten }}
\end{aligned}
$$

Assuming 8-bit 2's complement numbers.

Converting Decimal to Binary (2’s C)

- Repeated Division

1. Find magnitude of decimal number
2. Divide by two - remainder is least significant bit.
3. Keep dividing by two until answer is zero, writing remainders from right to left.
4. Append a zero as the MS bit; for negative, take two's complement.

$X=104_{\text {ten }}$	$104-64$	$=40$	bit 6
	$40-32$	$=8$	bit 5
	$8-8$	$=0$	bit 3

Operations: Arithmetic and Logical

- Recall: data types include representation and operations.
- 2's complement is a good representation for signed integers, now we need arithmetic operations:
- Addition (including overflow)
- Subtraction
- Sign Extension
- Multiplication and division can be built from these basic operations.
- Logical operations are also useful:
- AND
- OR
- NOT

Addition

- As we' ve discussed, 2' s comp. addition is just binary addition.
- assume all integers have the same number of bits
- ignore carry out
- for now, assume that sum fits in n-bit 2's comp. representation 01101000 (104) 11110110 (-10) + $11110000(-16) \quad+$ 01011000 (98)

Assuming 8-bit 2's complement numbers.

Subtraction

- Negate subtrahend (2nd no.) and add.
- assume all integers have the same number of bits
- ignore carry out
- for now, assume that difference fits in n-bit 2' s comp. representation

01101000 (104)	11110110 (-10)
00010000 (16)	(-9)
01101000 (104)	11110110 (-10)
11110000 (-16)	(9)
01011000 (88)	(-1)

Assuming 8-bit 2's complement numbers.

Sign Extension

- To add two numbers, we must represent them with the same number of bits.
- If we just pad with zeroes on the left:

$\underline{\text { 4-bit }}$		$\underline{\text { 8-bit }}$	
$\mathbf{0 1 0 0}$	(4)	$\underline{0000100}$	(still 4)
$\mathbf{1 1 0 0}$	(-4)	$\mathbf{0 0 0 0 1 1 0 0}$	(12, not -4)

- Instead, replicate the MS bit -- the sign bit:

$\underline{\text { 4-bit }}$		$\underline{8}$-bit	
$\mathbf{0 1 0 0}$	(4)	$\underline{00000100}$	(still 4)
1100	(-4)	11111100	(still -4)

Overflow

- If operands are too big, then sum cannot be represented as an n-bit 2' s comp number.

$\mathbf{0 1 0 0 0}(8)$
$+\mathbf{0 1 0 0 1}(9)$
$\mathbf{1 0 0 0 1}$

- We have overflow if:
- signs of both operands are the same, and
- sign of sum is different.
- Another test -- easy for hardware:
- carry into MS bit does not equal carry out

Logical Operations

- Operations on logical TRUE or FALSE
- two states -- takes one bit to represent: TRUE=1, FALSE=0

A		AAND B	A		AORB	A	NOTA
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

- View n-bit number as a collection of n logical values
- operation applied to each bit independently

Examples of Logical Operations

 11000101- AND

AND $\quad 00001111$

- useful for clearing bits 00000101 -AND with zero $=0$
-AND with one = no change
- OR
- useful for setting bits - OR with zero $=$ no change - OR with one $=1$
- NOT

NOT 11000101

- unary operation -- one argument 00111010
- flips every bit

Hexadecimal Notation

- It is often convenient to write binary (base-2) numbers in hexadecimal (base-16) instead.
- fewer digits - four bits per hex digit
- less error prone - no long string of 1's and 0 's

Binary	Hex	Decimal		Binary	Hex	Decimal					
0000	0	0		1000	8	8					
0001	1	1		1001	9	9					
0010	2	2		1010	A	10					
0011	3	3		1011	B	11					
0100	4	4		1100	C	12					
0101	5	5		1101	D	13					
0110	6	6		1110	E	14					
0111	7	7	1111	F	15						
								cs270 - Spring 2012 - Colorado State University			27

Converting from Binary to Hexadecimal

- Every four bits is a hex digit.
- start grouping from right-hand side

$$
011101010001111010011010111
$$

This is not a new machine representation, just a convenient way to write the number.

Fractions: Fixed-Point

- How can we represent fractions?
- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2' s comp addition and subtraction still work (if binary points are aligned)

No new operations -- same as integer arithmetic.

Very Large and Very Small: FloatingPoint

- Large values: 6.023×10^{23}-- requires 79 bits
- Small values: 6.626×10^{-34}-- requires >110 bits
- Use equivalent of "scientific notation": F x 2^{E}
- Must have F (fraction), E (exponent), and sign.
- IEEE 754 Floating-Point Standard (32-bits):

$N=(-1)^{S} \times 1$.fraction $\times 2^{\text {exponent- } 127}, 1 \leq$ exponent ≤ 254
$N=(-1)^{S} \times 0$. fraction $\times 2^{-126}$, exponent $=0$

Floating Point Example

- Single-precision IEEE floating point number:
- $1 \underline{01111110} \underline{10000000000000000000000}$

- Sign is 1 - number is negative.
- Exponent field is $01111110=126$ (decimal).
- Fraction is $1.100000000000 \ldots=1.5$ (decimal).
- Value $=-1.5 \times 2^{(126-127)}=-1.5 \times 2^{-1}=-0.75$

Floating-Point Operations

- Will regular 2's complement arithmetic work for Floating Point numbers?
- (Hint: In decimal, how do we compute $3.07 \times 10^{12}+9.11 \times$ 108?)

Text: ASCII Characters

- ASCII: Maps 128 characters to 7-bit code.
- printable and non-printable (ESC, DEL, ...) characters

00 n	10 dle	20 sp	$30 \quad 0$	40 @	50 P	60	70
01 soh	11 dc 1	21 !	31	41 A	51 Q	61 a	71
02 st	12 dc 2	22	322	42 B	52 R	62 b	72
03 e	13 dc 3	23 \#	33	43 C	53 S	63	73
04 eot	14 dc 4	24 \$	344	44 D	54	64 d	74
05 enq	15 nak	25 \%	$35 \quad 5$	45 E	55 U	65 e	75
06 ack	16 syn	26 \&	366	46 F	56 V	66	76
07 bel	17 etb	27	37	47 G	57 W	67 g	77
08 bs	18 can	28	388	48 H	58 X	68 h	78
09 ht	19 em	29	399	49	59 Y	69	79
0 a nl	1a sub	2 a	3 a	4 a J	5a Z	6a	7a
Ob vt	1b esc	$2 \mathrm{~b}+$	3b	4b K	5b	6 b k	7b
Oc np	1c fs	2c	3 c <	4c L	5 c 1	6c	7c
Od cr	1d gs	2d	3d	4d M	5d	6d m	7d
Oe so	1e rs	2 e	$3 \mathrm{e}>$	4e N	5e	6 e n	7 e
Of si	1 f us	$2 f$	3 f ?	$4 \mathrm{f} \quad \mathrm{O}$	$5 f$	6 f	7 f del

Interesting Properties of ASCII Code

- What is relationship between a decimal digit (0 ' ' 1 ', ...) and its ASCII code?
- What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough? (http://www.unicode.org/)

[^0]
Other Data Types

- Text strings
- sequence of characters, terminated with NULL (0)
- typically, no hardware support
- Image
- array of pixels
- monochrome: one bit (1/0 = black/white)
- color: red, green, blue (RGB) components
- other properties: transparency
- hardware support:
- typically none, in general-purpose processors
- MMX -- multiple 8-bit operations on 32-bit word
- Sound
- sequence of fixed-point numbers

LC-3 Data Types

- Some data types are supported directly by the instruction set architecture.
- For LC-3, there is only one hardware-supported data type:
- 16-bit 2's complement signed integer
- Operations: ADD, AND, NOT
- Other data types are supported by interpreting 16-bit values as logical, text, fixed-point, etc., in the software that we write.

[^0]: No new operations -- integer arithmetic and logic.

