Chapter 14
Functions

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

Function

o Smaller, simpler, subcomponent of program
@ Provides abstraction
= hide low-level details, give high-level structure
= easier to understand overall program flow
= enables separable, independent development
@ C functions
= zero or multiple arguments passed in
= single result returned (optional)
= return value is always a particular type
@ In other languages, called procedures,
subroutines, ...

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

Example of High-Level Structure

main ()
{
SetupBoard() ; /* place pieces on board */
DetermineSides () ; /* choose black/white */

/* Play game */ Structure of program
do { _ is evident, even without
WhitesTurn() ; knowing implementation.

BlacksTurn() ;
} while (NoOutcomeYet()) ;

CS270 - Spring 2011 - Colorado State University 3

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

Functions in C

@ Declaration (also called prototype)
int Factorial (int n);

/

type of name of types of all
return value function arguments

@ Function call -- used in expression
a = x + Factorial(f + qg);

1. evaluate arguments

2, execute function

3. use return value in expression

CS270 - Spring 2011 - Colorado State University 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function Definition

@ State type, name, types of arguments
= must match function declaration
= give name to each argument (doesn't have to match
declaration)
int Factorial (int n)

{
int i;
int result = 1;
for (i = 1; i <= n; i++)
result *= i;
return result;

gives control back to
calling function and
} returns value

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Why Declaration?

@ Since function definition also includes
return and argument types, why is declaration
needed?
@ Use might be seen before definition.
Compiler needs to know return and arg types
and number of arguments.
o Definition might be in a different file, written by

a different programmer.
= include a "header" file with function declarations only

= compile separately, link together to make executable

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

double Va{:sinDollars(double amount, double rate);
main () function declaration (prototype)

{

4 function call (invocation)

dollars = ValuelInDollars(francs,

DOLLARS_PER_FRANC) ;

printf ("$f francs equals %f dollars.\n",

francs,

}

dollars) ;

+ function definition (code)

double ValueInDollars (double amount, double rate)

{

return amount * rate;

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Implementing Functions: Overview

@ Activation record (stack frame)
= information about each function,
including arguments and local variables
« stored on run-time stack
Calling function

push new activation
record
copy values into

arguments
call function / activation record

get result from stack

Called function

wexecute code
/ put result in

pop activation record
from stack
return

CS270-Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Run-Time Stack

@ Recall that local variables are stored
on the run-time stack in an activation record

@ Stack Pointer (R6) is a pointer to the next free
location in the stack, and is used to push and
pop values on and off the stack.

@ Frame pointer (R5) is a pointer to the beginning

of a region of the activation record that stores
local variables for the current function

@ When a new function is called, its activation
record is pushed on the stack; when it returns,
its activation record is popped off of the stack.

CS270 - Spring 2011 - Colorado State University 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Run-Time Stack

Memory Memory Memory
«— R6
T — watt —<— RS T
« R6 — — . R6
™ main —] R® [~ main— ™ main — RS
Before call During call After call

CS270 - Spring 2011 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Activation Record

@ int NoName (int a, int b)

{
int w, x, y; >
X locals
R5 — W
5 dynamic link
return y; bookkeeping return address
} return value
a args
Name |Type | Offset | Scope b
a int 4 NoName
b int 5 NoName
w int 0 NoName
X int -1 NoName
y int -2 NoName
CS270 - Spring 2011 - Colorado State University 1"

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Activation Record Bookkeeping

@ Return value
= space for value returned by function
= allocated even if function does not return a value

o Return address
= save pointer to next instruction in calling function
= convenient location to store R7 in case another
function (JSR) is called
o Dynamic link
= caller’ s frame pointer
= used to pop this activation record from stack

CS270 - Spring 2011 - Colorado State University 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Function Call
@ int Volta(int g, int r)
{
int k;
int m;
éééurn k;
}

int Watt(int a)
{

int w;
w = Volta(w,10);
return w;

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Calling the Functior

o

Qw = Volta(w, 10);

@ ; push second arg

AND RO, RO, #0

ADD RO, RO, #10 25

ADD R6, R6, #-1 10

STR RO, R6, #0 5— 25

; push first argument

LDR RO, R5, #0
ADD R6, R6, #-1

STR RO, R6, #0

; call subroutine 431000

JSR Volta
Note: Caller needs to know number and type of arguments,
doesn't know about local variables.
CS270 - Spring 2011 - Colorado State University

q
r

w
dyn link
ret addr
ret val
a

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Starting the Callee Function

Q® ; leave space for return value

ADD R6, R6, #-1 new R6 — m
; push return addres new RS — kKo
xFCFB | dyn link
ADD R6, R6, #-1 %3100 |retaddr
STR R7, R6, # ret val
; push caller’'s fram 25 q
ADD R6, R6, #-1 10 r
STR R5, R6, #0 R
; set new frame pointer r;adm
ADD R5, R6, #-1 ret val
; allocate space for locals a
ADD R6, R6, #-2 XFDOO
CS270 - Spring 2011 - Colorado State University 15
Ending the Callee Function
Q@ return k;
@ ; copy k into return value R ;3 m
LDR RO, R5, #0 R5 — 217 k
STR RO, R5, #3 xFCFBR | dyn link
; pop local variables x3100 |retaddr
ADD R6, R5, #1 ret val
; pop dynamic link 25 q
LDR R5, R6, #0 10 r
ADD R6, R6, #1 new R5 25 wo
; pop return addr nto R7) iﬁ!Qﬁ
LDR R7, R6, #0 -
ADD R6, R6, #1 4

; return control to caller
RET

xFD0O

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Resuming the Caller Function

Qw = Volta(w,10);
@ JSR Volta
; load return value
R6 — 217 ret val

; from top of SEEEE///////’//// 25 q
IDR RO, R6, #0 newR6\ | 10 |

; perform aSSig?TEEE/—-*“’B§:: 217 g .
STR RO, R5, #0 reyt”a:j”dr
; pop return value -
ADD R6, R6, #1 a
; pop arguments xFD00
ADD R6, R6, #2

CS270 - Spring 2011 - Colorado State University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary of LC-3 Function Call
Implementation

Caller pushes arguments (last to first).

Caller invokes subroutine (JSR).

Callee allocates return value, pushes R7 and R5.
Callee allocates space for local variables.

Callee executes function code.

Callee stores result into return value slot.

Callee pops local vars, pops R5, pops R7.
Callee returns (JMP R7).

Caller loads return value and pops arguments.

0 Caller resumes computation...

CS270 - Spring 2011 - Colorado State University 18

-“99"7‘9’."':‘“.‘*’!\’?‘

