Chapter 6
Programming

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C.Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill C¢

3
°

required for on o display.

Computing Layers

/\\ Problems — €
&7’ Algorithms

Devices

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solving Problems using a Computer

@ Methodologies for creating computer programs
that perform a desired function.

o Problem Solving
=« How do we figure out what to tell the computer to do?
=« Convert problem statement into algorithm,
using stepwise refinemeni.
= Convert algorithm into LC-3 machine instructions.
o Debugging
= How do we figure out why it didn’ t work?
= Examine registers and memory, set breakpoints, etc.

’ Time spent on the first can reduce time spent on the second!

CS270 - Fall 2011 - Colorado State University 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Stepwise Refinement

@ Also known as systernatic decornposition.
@ Start with problem statement:

“We wish to count the number of occurrences of a
character in a file. The character in question is to be
input from the keyboard; the result is to be displayed
on the monitor.”

@ Decompose task into a few simpler subtasks.

@ Decompose each subtask into smaller subtasks,
and these into even smaller subtasks, etc....
until you get to the machine instruction level.

CS270 - Fall 2011 - Colorado State University 4

Copyright © The McGraw-Hill Companies, Inc. ission required for

o or display.

Problem Statement

@ Because problem statements are written in
English, they are sometimes ambiguous and/or
incomplete.

« Where is “file” located? How big is it, or how do |
know when |’ ve reached the end?

« How should final count be printed? A decimal
number?

« |f the character is a letter, should | count both
upper-case and lower-case occurrences?
@ How do you resolve these issues?
» Ask the person who wants the problem solved, or
» Make a decision and document it.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill C Inc. i required for

ion or display.

Three Basic Constructs

@ There are three basic ways to decompose a
task: |

!

True
Subtask 1 Subtask 2
Subtask 2 Subtask
Sequential Conditional Iterative

CS270 - Fall 2011 - Colorado State University 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential

@ Do Subtask 1 to completion, then do Subtask 2
to completion, etc. |

Get character
input from
keyboard

) !

Count and print the Examine file and
occurrences of a ﬁ count the number
character in a file of characters that

l match

|

Print number
to the screen

!

CS270 - Fall 2011 - Colorado State University 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conditional

@ If condition is true, do Subtask 1;
else, do Subtask 2.

i

Test character.

If match, increment ﬁ Count = Count + 1
counter.

i

CS270 - Fall 2011 - Colorado State University 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Iterative

@ Do Subtask over and over,
as long as the test condition is true.

i more chars
to check?

Check each element of
the file and count the d e
characters that match.
i Check next char and
count if matches.
A\
CS270 - Fall 2011 - Colorado State University 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Problem Solving Skills

@ Learn to convert problem statement
into step-by-step description of subtasks.
Like a puzzle, or a “word problem” from
grammar school math.
* What is the starting state of the system?
* What is the desired ending state?
* How do we move from one state to another?

» Recognize English words that correlate to three basic
constructs:

- “do A then do B” = sequential
- “if G, then do H” = conditional
- “for each X, do Y’ = iterative
* “do Z until W” = iterative

CS270 - Fall 2011 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Control Instructions

@ How do we use LC-3 instructions to encode
the three basic constructs?

@ Sequential
= Instructions naturally flow from one to the next, so no
special instruction needed to go from one sequential
subtask to the next.
o Conditional and lterative

= Create code that converts condition into N, Z, or P.
Example: “Is RO = R1?”
Code: Subtract R1 from RO; if equal, Z bit will be set.

= Use BR instruction to transfer control to proper subtask.

CS270 - Fall 2011 - Colorado State University 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exact bits depend
on condition
being tested

True False

oY)

Code for Conditional
Condition/
000%111| D\
N

PC offset to
address C
Instruction
Test
onditio oooo‘]‘ 2 | c/
© /

Generate
Subtask 1 Subtask 2 :> Subtask 1
/ Subtask 2

Unconditional branch
Next to Next Subtask D
Subtask Next < PC offset to
l Subtask address D

Assuming all addresses are close enough that PC-relative branch can be used.

CS270 - Fall 2011 - Colorado State University 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Code for Iteration

PC offset to
address C

Exact bits depend

on condition Instruction
being tested
False ¢ R Generate
Condition

N
oooo\|~? | c/

B
:> Subtask

ooooJ111 | N

c / Next

Subtask

Subtask
L

Next
Subtask

'

Unconditional branch
to retest condition

PC offset to
address A

Assuming all addresses are on the same page.

CS270 - Fall 2011 - Colorado State University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Counting Characters

Initialize: Put initial values
into all locations that will be

START needed to carry out this
task.

- Input a character.

Input a character. Then - Set up a pointer to the first
scan a file, counting location of the file that will
occurrences of that be scanned.

character. Finally, display ;r?eeftil?e first character from

on the monitor the number - Zero the register that holds
of occurrences of the the count.
character (up to 9). ;

Scan the file, location by

location, incrementing the
STOP counter if the character

matches.
o . o : !
Initial refmemept. Big task into B Dicpiay the count on the
three sequential subtasks. monitor.

€S270 - Fall 2011 - Colorado State University _STOP 14

1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B

Yes
Done?

location, increm

matches.

counter if the character

Scan the file, location by No

enting the B1

Test character. If a match,
increment counter. Get next

character.

A

'

Refining B

into iterative construct.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B1

B1

Yes

] ————— < Done?

No
B1

B2| Test character. If matches,

Test character. If
increment counte
character.

increment counter.

a match,
r. Get next —

B3| Get next character. }

{

Refining

B1 into sequential subtasks.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B2 and B3 ‘f

B2 N0|
VCEE Done? Yes @ No
No =
B1 R2=R2+1
B2| Test character. If matches,
increment counter. N I I

B3

B3[Get next character. ——] [R3=R3+1

2 [R1=M[R3]

Conditional (B2) and sequential (B3).
Use of LC-2 registers and instructions.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Last Step: LC-3 Instructions

@ Use comments to separate into modules and

to document your code.

B2

; Look at each char in file.

0001100001111100 ; is R1 = EOT?
0000010xxxxxxxxx ,; if so, exit loop
; Check for match with RO.

1001001001111111 ; R1
0001001001100001

000100100000000 ; R1
0000101xxxXXXXXXX\ ; no
0001010010100001 \ ; R2

; Incr file ptr\a
0001011011100001
0110001011000000

; R3
R1

= -char

= R0 - char
match, skip incr
=R2 + 1

get next char

=R3 + 1
= M[R3]

Yes —~
\\
B3
[R3=R3+1 | |
[R1=M[R3] F—

CS270 - Fall 2011 - Colorado State University

Don’ t know
PCoffset bits until
all the code is done

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging

@ You’ ve written your program and it doesn’ t work.
o Now what?

@ What do you do when you’ re lost in a city?
= Drive around randomly and hope you find it?
v'Return to a known point and look at a map?

VIn debugging, the equivalent to looking at a map
is tracing your program.

. Examine the sequence of instructions being executed.
. Keep track of results being produced.

. Compare result from instructions to the expected result.

CS270 - Fall 2011 - Colorado State University 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging Operations
@ Any debugger should provide means to:
1. Display values in memory and registers.
> Deposit values in memory and registers.
s Execute instruction sequence in a program.
» Stop execution when desired.

1. Different programming levels offer different tools.
= High-level languages (C, Java, ...)
usually have source-code debugging tools.
« For debugging at the machine instruction level:
* simulators
« operating system “monitor” tools
* in-circuit emulators (ICE)

= plug-in hardware replacements that give instruction-level
control

CS270 - Fall 2011 - Colorado State University 20

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Simulator

stop execution,

set breakpoints
execute

instruction
sequences

b1 Mi] Jumpto:|x3200 vI

P S —
RO x0000 O R4 x0000

0 PC %3200 12800
R1 %0000 O RS %0000 O IR %0000 O
R2 %0000 O R6 %0000 O PSR x8002 -3276
R3 x0000 0 R7 x0000 0 cc Z
0101010010100000 x5 4
x3201 0001010010000100 x1484 ADD RZ, R2, R4
%3202 0001101101111111 x1B7F ADD R5, RS, #-1 _I
x3203 0000011111111101 xO07FD BRZP x3201
%3204 1111000000100101 xF02Z5 TRAP HALT
%3205 0000000000000000 %0000 NOP
x3206 0000000000000000 x0000 NOP LI
multiply.obj |0instructions executed [1dle 7
CS270 - Fall 2011 - Colorado State University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Types of Errors

@ Syntax Errors

= You made a typing error that resulted in an illegal
operation.

= Not usually an issue with machine language, because
almost any bit pattern corresponds to a legal instruction.

= In high-level languages, these are often caught during
the translation from language to machine code.
@ Logic Errors

= Your program is legal, but wrong, so the results don’ t
match the problem statement.

= Trace the program to see what’ s really happening and
determine how to get the proper behavior.
o Data Errors
= Input data is different than what you expected.
= Test the program with a wide variety of inputs.

CS270 - Fall 2011 - Colorado State University 22

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tracing the Program

@ Execute the program one piece at a time, examining register
and memory to see results at each step.

o Single-Stepping
= Execute one instruction at a time.
= Tedious, but useful to help you verify each step of your program.

o Breakpoints

= Tell the simulator to stop executing when it reaches
a specific instruction.

= Check overall results at specific points in the program.
@ Quickly execute sequences to get an overview of the behavior.
@ Quickly execute sequences that your believe are correct.

o Watchpoints
= Tell the simulator to stop when a register or memory location changes
or when it equals a specific value.

= Useful when you don’ t know where or when a value is changed.

CS270 - Fall 2011 - Colorado State University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 1: Multiply

@ This program is supposed to multiply the two
unsigned integers in R4 and R5.

| Cm?TRZ | %3200 0101010010100000
T %3201 0001010010000100
1 %3202 0001101101111111
e %3203 0000011111111101
%3204 1111000000100101

No
@ Set R4 =10, R5 =3.

s Run program.
HALT Result: R2 =40, not 30
CS270 - Fall 2011 - Colorado State University 24

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Multiply Program

Single-stepping

PC R2 | R4 | R5 / .
Breakpoint at branch (x3203)
PC and registers x3200 - 10 3 j
at the beginning x3201 0 10 3
of each instruction [, 3505 10 10 3 PC R2 | R4 | R5
x3203 | 10| 10| 2 x3203 | 10] 10| 2
x3201 | 10| 10| 2 x3203 | 20| 10] 1
x3202 | 20| 10| 2 x3203,] 30| 10| O
x3203 | 20| 10| 1 x3203]] 40| 10] -f
x3201 | 20| 10| 1 40] 10| -
x3202 30 10 1 [=——Should stop looping here!
x3203 30| 10 0
x3201 30| 10 0 . :
Executing loop one time too many.
x3202 | 40| 10| 0] Branch at x3203 should be based
x3203 | 40| 10| -1 on Z bitonly, not Z and P.
x3204 40| 10 -1
zbz 0- l—% 2011 -_L1o orado State University 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 2: Sum an Array of Numbers
@ This program is supposed to sum the numbers
stored in 10 locations beginning with x3100,
leaving the result in R1.

A %3000 0101001001100000

R2 = x3100 %3001 0101100100100000

| %3002 0001100100101010

R %3003 0010010011111100
I %3004 0110011010000000

| R4=Ra-1 | %3005 0001010010100001

x3006 0001001001000011

No x3007 0001100100111111
x3008 0000001111111011

Yes x3009 1111000000100101

HALT CS270 - Fall 2011 - Colorado State University 26

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Summing Program

@ Running the the data below yields R1 = x0024,
but the sum should be x8135. What happened?

Address | Contents Start single-stepping program...

x3100 | x3107 s =il = |

x3101 | x2819 0 e
x3102 | x0110 oo
x3103 | x0310 @z | ol - o
x3104 x0110 x3003 0 - 10
x3105 x1110 x3004 0 | x3107 10
x3106 | x11B1 Should be x3100!

2007 A0 Loading contents of M[x3100], not address.
x3108 x0007 Change opcode of x3003
x3109 x0004 from 0010 (LD) to 1110 (LEA).

CS270 - Fall 2011 - Colorado State University 27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 3: Looking for a 5

o This p.rogram, I3 SUP.posed to set x3000 0101000000100000
RO=1 if there' s a 5 in one ten %3001 0001000000100001

memory locations, starting at x3100./ x3002 0101001001100000
x3003 0001001001111011

%3005 0001011011101010
R0=1,R1=-5R3=10 x3006 0010100000001001
R4 = x3100, R2 = M[R4] %3007 0110010100000000

R2 = 57 >0 %3008 0001010010000001

%3009 0000010000000101

\K x300A 0001100100100001
T x300B 0001011011111111
R3 = R3-1 x300C 0110010100000000
x300E 0101000000100000

x300F 1111000000100101
%3010 0011000100000000

No

CS270 - Fall 2011 - Colorado State University 28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Fives Program

@ Running the program with a 5 in location x3108
results in RO = 0, not RO = 1. What happened?

Addres | Content
s s
x3100 9
x3101 7
x3102| 32
x3103 0
x3104| -8
x3105| 19
x3106 6
x3107| 13
x3108 5

Perhaps we didn’ t ook at all the data?

Put a breakpoint at x300D to see

how many times we branch back.

PC | RO | R2 | R3| R4
x300D 1 7 9| x3101
x300D 1 32 8 | x3102
x300D 1 0 7| x3103

0 0 7| x3103

Branch uses condition code set by

Didn’ t branch
back, even
though R3 > 0?

loading R2 with M[R4], not by decrementing R3.
Swap x300B and x300C, or remove x300C and
branch back to x3007.

CS270 - Fall 2011 - Colorado State University

29

Copyright © The McGraw-Hill Companies, Inc.

Permission required for reproduction or display.

Example 4: Finding First 1 in a Word

@ This program is supposed to return (in R1) the bit
position of the first 1 in a word. The address of the word
is in location x3009 (just past the end of the program). If
there are no ones, R1 should be set to —1.

R1=15
R2 = data

No

decrement R1
shift R2 left one bit

x3000
x3001
%3002
%3003
x3004
x3005
x3006
%3007
%3008
x3009

0101001001100000
0001001001101111
1010010000000110
0000100000000100
0001001001111111
0001010010000010
0000100000000001
0000111111111100
1111000000100101
0011000100000000

CS270 - Fall 2011 - Colorado State University

30

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the First-One Program

@ Program works most of the time, but if data is
zero, it never seems to HALT.

PC | R PC_|R1 Breakpoint at backwards branch (x3007)

x3007 | 14 x3007 | 4
x3007 | 13 x3007 | 3 If no ones, then branch to HALT
x3007 | 12 x3007 | 2 never occurs!
%3007 | 11 3007 | 1 This is called an “infinite loop.”
%3007 | 10 3007 |0 Must change aIgon_'lthm to either

(a) check for special case (R2=0), or
x3007 | 9 x3007 | -1 . .

(b) exit loop if R1 < 0.
x3007 | 8 x3007 | -2
x3007 | 7 x3007 | -3
x3007 | 6 x3007 | -4
x3007 | 5 x3007 | -5

CS270 - Fall 2011 - Colorado State University 31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging: Lessons Learned

@ Trace program to see what’ s going on.
« Breakpoints, single-stepping

@ When tracing, make sure to notice what's
really happening, not what you think should
happen.
= In summing program, it would be easy to not notice

that address x3107 was loaded instead of x3100.
@ Test your program using a variety of input data.

= In Examples 3 and 4, the program works for many (but not
all) data sets.

= Be sure to test extreme cases (all ones, no ones, ...).

CS270 - Fall 2011 - Colorado State University 32

16

