
CS 270 Fall 2011 Final

16 Dec 2011, 9:40{11:40 am

Name

Please read these instructions completely before proceeding, and

sign below. Your exam will not be graded without your signature.

� This is a closed book exam, but you are allowed to bring in one page (one single side) of

handwritten notes. It is designed so that the average score is about 80 (67%). Do not be

discouraged if you cannot answer all the questions.

� The next page of this exam has the question-by question table of your �nal score with

six extra \Plan of Attack" columns that list the order in which you plan to solve these

problems and the time at which you will start and stop each one. When you start the

exam, you should spend 10 minutes to do your plan of attack, and �ll these columns.

Then refer back to it and manage your time.

� The last pages of this exam have the LC-3 opcodes and the datapath of the LC3 (page 142).

You are free to tear them out and use as a reference.

� This exam will last two hours, the total is 120, the weight of each problem corresponds

to the time you should spend on it.

� You are allowed to use only paper/pen/pencil and your brain|no calculator, laptop,

phone, ipod, or any electronic device. Please turn o� cellphones, and please refrain from

using any listening device (music, etc.)

� Do not turn this page until you are asked to.

I have read the above instructions. I will do the exam honestly

and fairly.

Signature

Problem 0: Plan of Attack [10 pts]

Quickly read through the exam and make a plan of attack. For each question, think

about what skills it's testing for, how comfortable you feel, and rate its di�culty level

(not how long it's going to take|some are long and some are short|but how hard it

is). Based on this, �ll up the PoA columns on in the table below. Don't �ll up the last

three columns as yet. Problem 4 is long and counts for 55 points [10+15+10+5+5+10].

You may even want to make a separate PoA for it if you like.

Don't write in these columns Plan of Attack Revised PoA

Prob. Topic Max Score PoA Start End PoA Start End

0 PoA 10 10 0 9:40 9:50

1 Numbers & Data 10

2 Gates/Comb Ckts 15

3 LC3 Architecture 10

0.b Revised PoA 5

4 Programming 45

5 Pot pourri 15

6 Activation Records 10

Total 120

2

Problem 1: Numbers and Data [10 pts]

a. This question is about adding two 8-bit sign-magnitude numbers, A = −50, and

B = +28 (not 2's complement, not 1's complement, but sign-magnitude). First, �gure

out the binary representation of the two numbers and write it down in the table below

(in the order that is most convenient to compute A + B). Next, compute A + B in the

bottom row (if you want to be considered for partial credit you must show all your

work). [5 pts]

A or B

B or A

A + B

b. Suppose you are adding two 16-bit
oating point numbers, and suppose that they

have the same sign bit, and that their exponents are equal. For this special case, does

the result have to be normalized [2 pts]? If not, explain why, otherwise, explain how to

compute the number and direction by which to shift the answer [3 pts]? [5 pts]

Problem 2: Gates and Combinational Circuits [15 pts]

In this problem, we will design a circuit that adds two 16-bit sign-magnitude integers,

A[15 : 0] and B[15 : 0]. We will \peel o�" the respective sign bits and call them SignA

and SignB. The remaining 15 bits we will call, them MagA and MagB. We are not

going to ask you for the entire design just speci�c parts. Answer only what is asked for.

3

Part a. The sign of the result (SignR) is a function of SignA, SignB and A > B the

output of a \comparator" circuit. Fill up the truth table of this function [5 pts], and

draw a circuit that implements it using only NOR gates [5 pts] (a correct circuit with

other gates will get you some partial credit). [10 pts]

SignA SignB A > B SignR

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Part b. The circuit diagram of this adder, is partially shown on the next page. Com-

plete it. You'll have to add new elements, but use as few as possible. [5 pts]

4

You may use shorthand|rather than drawing out parts, you may just use names

(e.g., we used names to show the inputs to the combinational logic \clouds" and MagA

and MagB to show the adder inputs).

add as needed
SUBTRACTADDCOMPARATOR

MUX

1515151515

15
15

1616

15

16

Mag BMag AMag BMag A

BA

15

sign Bsign A

Mag A + Mag B

15

A > B

sign S

sign B
sign A

A > B

sign B
sign A

A > B

?
CL 1

CL 2

Mag S

5

Problem 3: LC-3 Architecture [10 pts]

This question is about life as an LC-3 architecture detective. Your spy is snooping on the

activities going on in the LC-3 data-path and reports which signals were active in suc-

cessive cycles. Your job is to deduce what happened. The signals are: LD PC, GatePC,

GateMARMUX, ADDR1MUX, ADDR2MUX, DR, SR1, SR2, LD REG, LD IR, LD MDR,

LD MAR, MEM EN, and R W.

Part a. Here is your spy's �rst report:

Cycle Signals that are active

1 GatePC, LD MAR, MEM EN, R W

2 LD MDR

3 LD IR

What did the LC-3 just do? [2 pts]

Part b. The next report is a few hundred clock cycles later, and is somewhat sketchy,

but your spy is sure that just before Cycle 1 was a decode step.

Cycle Signals that are active

1 GatePC, DR=111, LD REG

2 Smudged

With just this much information, what can you deduce about the op-code of the in-

struction in IR. [2 pts]

6

Part c. Because the last line is smudged, you call your spy who says, \I can tell you

that GateMARMUX is 0, SR1 is 010, and also, ADDR1MUX = 0, i.e., it is selecting

left input, SR1OUT." You, the master detective thank your spy, turn to the assembled

audience and say, \I now know all!" Explain: the complete instruction in IR, as well as

all other signals that are on in Cycle 2. [8 pts]

Problem 0.b: Revised PoA [5 pts]

This is a 5 minute, strategy break. First, take a quick 1-minute break. Close you eyes,

calm down, breathe deeply and relax. Get up and physically stretch and try to ease

tension. Make eye contact with your friends and smile. Look at Sanjay and scowl.

Now, revisit your plan. Draw a line through all problems that you have �nished,

and revise the plan as needed. Budget the remaining time appropriately. Maybe now,

you want to make a plan for the parts of Problem 4.

Problem 4: Programming: [55 pts]

This problem deals with LC-3 as well as C. It is broken up into pieces and each piece

could be solved independently. However, you should at least read through the problem

sequentially during your PoA.

7

Part a. [10 pts] Write an LC-3 program that implements the following single line of

C, assuming that i and k are ints, have non-negative values and the loop is guaranteed

to terminate.

for (i=k; i<16; i++){ LOOP_BODY }

Don't worry about stacks, activation records, etc. Assume that variables are accessed

directly from memory (labels in the LC-3 code), Your code must use a single register,

R0. No other registers must be touched, even to save them. [10 pts]

.ORIG 3200

;; Code to be executed bfore the loop will come here

BEFORE: ;; blah ... blah

;; more blah

;;The logic to execute the loop starts from the next line

START:

BODY:

;; The LOOP_BODY starts here, whatever it is. It does not touch R0

;; end of LOOP_BODY

;; The code after the loop starts on the next line

EXIT:

8

Part b. [25 pts] Now we implement the loop body, which is

if (input & pow(2,i)){ COND_BODY }

This uses C's bitwise-and operator, and the math library function that computes the

power, but your LC-3 code is not allowed to do this. So, we �rst modify the C loop as

follows:

mask = /* some expression E1 to initialize mask */ ;

for (i=k; i<16; i++){

if (input & mask) {

COND_BODY;

}

mask = /* expression E2 to update mask */

}

The expression, E1 may refer to only k, and E2 may refer to only mask. Neither should

make any function calls. You are to write the two expressions [5 pts], the corresponding

LC-3 code to implement the two statements that write to mask [10 pts], and also the

code that implements the logic of the if statement. [10 pts]

First write the two C expressions, E1 and E2. [5 pts]

Now write the LC-3 code to initialize mask = E1. Use R1 for mask. You are only

allowed one other register, R2. [10 pts]

9

Finally, write the LC-3 code to evaluate the conditional (loop body) and at the appro-

priate place, also the code to do mask = E2. [10 pts]

LOOP BODY:

;; Code to evaluate the condition expression, and based on that, to either do

;; or skip the COND_BODY. At the right place, insert code to do mask = E2

;;

;; Here is COND_BODY

;;

;; The code after the if-statement loop starts on the next line

;; This is the end of the loop body

10

Part c. [5 pts] Now for COND_BODY which is just

output = output | pow(2,(i-k)

This uses the power function, and you must write LC-3 code for it. So, we modify the C

code to introduce another variable mask2, in such away that the assignment statement now

becomes output = output | mask2. Give the C code for initializing mask (outside the loop)

and updating it inside the loop. [5 pts]

Part d. [5 pts] The initializations and update of mask2 can be written as LC-3 code (sim-

ilar to Part b) so we won't ask you for it. Write the snippet of LC-3 code that computes

output = output | mask2. Assume that mask2 is in R3, and you are allowed to use only one

other register, R4. [5 pts]

11

Part e. [10 pts] Consider the following little snippet of C.

// Some code that declares input, output, i, and k as integers

// It is assured that k is non-negative and "small enough"

// pow is the power function: pow(x,y) returns the yth power of x

// For example, pow(3, 2) returns 9

0 for (i=k; i<16; i++){

1: if (input & pow(2,i))

2: output = output | pow(2,(i-k);

3: }

If you did parts a-d, you wrote LC-3 code to execute it, but even if you haven't done that

yet, you can still do Part e. This code is intended to do something useful, but is incomplete. It

needs one more statement, output = expr before the loop, where expr is a C expression.

Describe in one simple, short sentence what this code is supposed to do, and �x it so that it

does. This takes more thinking, but the answer is short. If you want some partial credit, work

out an example, say input is 12,300 (in hex that's x300C, and k is 4. [10 pts]

12

Problem 5: Pot Pourri & Jeopardy [15 pts]

Part a. We wrote a new service subroutine called NewService which provides some very impor-

tant security service for the LC-3. We stored this service function at location x4000. Remember

that because it is s service routine that executes in privileged mode, it is not possible to link

it to the user code, and it canot be called with something like JSR NewService. Describe how

the user will be able to avail of this routine. There are many choices, you have to make a design

decision. [5 pts]

Part b. What is the symbol table of the LC-3 program shown on the next page? [5 pts]

13

;

; Program to count occurrences of a char in a file.

; Character to be input from the keyboard.

; Result to be displayed on the monitor.

; Program only works if <= 9 occurrences are found.

;

; Initialization

;

.ORIG x3000

AND R2, R2, #0 ; R2 is counter

LD R3, PTR ; R3 is pointer to chars

GETC ; R0 gets character input

LDR R1, R3, #0 ; R1 gets first character

;

; Test character for end of file

;

TEST ADD R4, R1, #-4 ; Test for EOT

BRz OUTPUT ; If done, prepare output

; Test character for match, if so increment count.

;

NOT R1, R1

ADD R1, R1, R0 ; If match, R1 = xFFFF

NOT R1, R1 ; If match, R1 = x0000

BRnp GETCHAR ; No match, no increment

ADD R2, R2, #1

;

; Get next character from file.

;

GETCHAR ADD R3, R3, #1 ; Point to next character.

LDR R1, R3, #0 ; R1 gets next char to test

BRnzp TEST

;

; Output the count.

;

OUTPUT LD R0, ASCII ; Load the ASCII template

ADD R0, R0, R2 ; Covert binary to ASCII

OUT ; ASCII code is displayed.

HALT ; Halt machine

;

; Storage for pointer and ASCII template

ASCII .FILL x0030

PTR .FILL x4000

.END

14

Part c. Given a C program with the following signature

int foo(input, k). The program has two int variable m1 and m2, and needs to push additional

temporary values on the stack as it executes. Show the activation record during the execution

of this function if it is called with the parameters 12,300 (in hex that's x300C) and 5, during

the course of execution, it has pushed two values on the stack. [5 pts]

15

